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REGRESSION MODELS 
 
One approach: Use theoretical considerations specific to the situation to develop a 
specific model for the mean function  or other aspects of the conditional distribution. 
 
The next two approaches (which have broader applicability) make model assumptions 
about joint or conditional distributions. They require some terminology: 
 
Error:  e|x = Y|(X = x) - E(Y|X = x) 
   = Y|x - E(Y|x) for short 
 

• So Y|x = E(Y|x) + e|x  (Picture this …) 
 
• e|x is a random variable 
 
• E(e|x) = E(Y|x) - E(Y|x)) = E(Y|x) - E(Y|x) = 0 
 
• Var(e|x) = 
 
• The distribution of e|x is 

 
Second approach:  
 

Bivariate Normal Model: Suppose X and Y have a bivariate normal distribution. 
(Of course, we need to have evidence that this model assumption is reasonable or 
approximately true before we are justified in using this model.) 
 
Recall: This implies 

• Y|x is normal 

• E(Y| x) = µY + ρ

! 

"
Y

"
X

(x - µX) (linear mean function) 

• Var(Y|x) = σY
2(1- ρ2)  (constant variance) 

Thus: 
 

• E(Y|x) = a + bx 
• Var(Y|x) = σ2 

where  
b =  
 
a =  
 
σ2 =  

Implications for e|x: 
 

• e|x ~ 
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Third approach: Model the conditional distributions 
 

"The" Simple Linear Regression Model 
 

Version 1:  
Only one assumption: E(Y|x) is a linear function of x. 
 
Typical notation:  E(Y|x) = η0 + η1x  (or E(Y|x) = β0 + β1x) 

 
Equivalent formulation: Y|x = η0 + η1x + e|x 
 
Interpretations of parameters: (Picture!) 
 η1: 
 

η0 :     (if …) 
 
 Some cases where this model fits: 

• X, Y bivariate normal 
• Other situations  

Example: Blood lactic acid 
 Why is this not bivariate normal? 

• Model might also be used when mean function is not linear, but linear 
approximation is reasonable. 

 
Note: In this model, Y is a random variable, but X need not be. 

 
Version 2: Two assumptions: 
 

1. E(Y|x) = η0 + η1x (linear mean function) 
2. Var(Y|x) = σ2 (constant variance) 
 
Equivalent formulation: 
 1'. E(Y|x) = η0 + η1x (linear mean function) 
 2': Var(e|x) = σ2 (constant error variance) 

[Draw a picture!] 
 
Situations where the model fits: 

• If X and Y have a bivariate normal distribution. 

• Credible (at least approximately) in many other situations as well, for transformed 
variables if not for the original predictor. (i.e., it's often useful) 
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Until/unless otherwise stated, we will henceforth assume the Version 2 model -- i.e., we 
will assume conditions (1) and (2) (equivalently, (1') and (2').) 
 
Thus we have three parameters: 
 η0, η1 (which determine E(Y|x) and σ2 (which determines Var(Y|x) 
 
The goal: To estimate η0 and η1 (and later σ2) from data. 
 
Notation: The estimates of η0 and η1 will be called 

! 

ˆ " 
0
 and 

! 

ˆ " 
1
, respectively. From 

! 

ˆ " 
0
 and 

! 

ˆ " 
1
, we obtain an estimate 

         

! 

ˆ E (Y|x) = 

! 

ˆ " 
0
 +

! 

ˆ " 
1
x  

of E(Y|x). 
 
Note: 

! 

ˆ E (Y|x)  is the same notation we used earlier for the lowess estimate of E(Y|x). Be 
sure to keep the two estimates straight. 
 
 More terminology:  

• We label our data (x1, y1), (x2, y2), … , (xn, yn). 
• 

! 

ˆ y i  = 

! 

ˆ " 
0
 +

! 

ˆ " 
1
xi is our resulting estimate 

! 

ˆ E (Y|xi) of E(Y|xi). It is called the ith 
fitted value or ith fit. 

• 

! 

ˆ e 
i
=  yi - 

! 

ˆ y i  is called the ith residual. 
 
Note: 

! 

ˆ e 
i
 (the residual) is analogous to but not the same as e|xi (the error). Indeed, 

! 

ˆ e 
i
 can 

be considered an estimate of the error ei  = yi - E(Y|xi). 
 Draw a picture:  
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Least Squares Regression: A method of obtaining estimates 

! 

ˆ " 
0
 and 

! 

ˆ " 
1
 for η0   and η1 

 
Consider lines y = h0 + h1x. We want the one that is "closest" to the data points (x1, y1), 

(x2, y2), … , (xn, yn) collectively. 
 
What does "closest" mean?  
 
Various possibilities: 
 
1. The usual math meaning: shortest perpendicular distance to point. 

Problems:  
• Gets unwieldy quickly.  
• We're really interested in getting close to y for a given x -- which suggests: 

 
2. Minimize ∑ di, where di = yi - (h0 + h1xi) = vertical distance from point to candidate 

line. (Note: If the candidate line is the desired best fit then di =           .) 
 Problem: Some di's will be positive, some negative, so will cancel out in the sum. 

This suggests: 
 
3. Minimize ∑ |di|. (“Minimum Absolute Deviation,” or MAD) This is feasible with 

modern computers, and is sometimes done. 
 Problems: 

• This can be computationally difficult and lengthy. 
• The solution might not be unique. 

Example: 
• The method does not lend itself as readily to inference for the estimates. 

 
4. Minimize ∑ di

2 
 This works well! 
 See demo. 
 
Terminology:  

• ∑ di
2 is called the residual sum of squares (denoted RSS(h0, h1)) or the 

objective function. 
• The values of h0 and h1 that minimize RSS(h0, h1) are denoted 

! 

ˆ " 
0
 and 

! 

ˆ " 
1
, 

respectively, and called the ordinary least squares (or OLS) estimates of η0   
and η1 

 
 


