STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS

Situation:

Assumption: $E(Y|x) = \eta_0 + \eta_1 x$ (linear mean function)

Data: $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$

Least squares estimator: $\hat{E}(Y|x) = \hat{\eta}_0 + \hat{\eta}_1 x$, where

$$\hat{\eta}_{0} = \frac{SXY}{SXX} \qquad \qquad \hat{\eta}_{0} = \overline{y} - \hat{\eta}_{1} \, \overline{x}$$

$$SXX = \sum (x_i - \overline{x})^2 = \sum x_i (x_i - \overline{x})$$

$$SXY = \sum (x_i - \overline{x}) (y_i - \overline{y}) = \sum (x_i - \overline{x}) y_i$$

Comment: If we also assume elx (equivalently, Ylx) is normal with constant variance, then the least squares estimates are the same as the maximum likelihood estimates of η_0 and η_1 .

Properties of $\hat{\eta}_0$ and $\hat{\eta}_1$:

1)
$$\hat{\eta}_{1} = \frac{SXY}{SXX} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})y_{i}}{SXX} = \sum_{i=1}^{n} \frac{(x_{i} - \overline{x})}{SXX}y_{i} = \sum_{i=1}^{n} c_{i}y_{i}$$
where
$$c_{i} = \frac{(x_{i} - \overline{x})}{SXX}$$

Thus: If the x_i 's are fixed (as in the blood lactic acid example), then $\hat{\eta}_i$ is a linear combination of the y_i 's.

Note: Here we want to think of each y_i as a random variable with distribution $Y|x_i$. Thus, if the y_i 's are independent and each $Y|x_i$ is normal, then $\hat{\eta}_l$ is also normal. If the $Y|x_i$'s are not normal but n is large, then $\hat{\eta}_l$ is approximately normal. This will allow us to do inference on $\hat{\eta}_l$. (Details later.)

2)
$$\sum c_i = \sum \frac{(x_i - \overline{x})}{SXX} = \frac{1}{SXX} \sum (x_i - \overline{x}) = 0$$
 (as seen in establishing the alternate expression for SXX)

3)
$$\sum x_i c_i = \sum x_i \frac{(x_i - \overline{x})}{SXX} = \frac{1}{SXX} \sum x_i (x_i - \overline{x}) = \frac{SXX}{SXX} = 1.$$

Remark: Recall the somewhat analogous properties for the residuals \hat{e}_i .

4)
$$\hat{\eta}_0 = \overline{y} - \hat{\eta}_1 \overline{x} = \frac{1}{n} \sum_{i=1}^n y_i - \sum_{i=1}^n c_i y_i \overline{x} = \sum_{i=1}^n (\frac{1}{n} - c_i \overline{x}) y_i$$
, also a linear combination of the y_i 's, hence ...

5) The sum of the coefficients in (4) is
$$\sum_{i=1}^{n} (\frac{1}{n} - c_i \overline{x}) = \sum_{i=1}^{n} (\frac{1}{n}) - \overline{x} \sum_{i=1}^{n} c_i = n(\frac{1}{n}) - \overline{x} 0 = 1.$$

Sampling distributions of $\hat{\eta}_0$ and $\hat{\eta}_1$:

Consider x_1, \ldots, x_n as fixed (i.e., condition on x_1, \ldots, x_n).

Model Assumptions ("The" Simple Linear Regression Model Version 3):

- $E(Y|x) = \eta_0 + \eta_1 x$ (linear mean function)
- $Var(Y|x) = \sigma^2$ (Equivalently, $Var(e|x) = \sigma^2$) (constant variance)
- (NEW) y_1, \dots, y_n are independent observations. (independence)

The new assumption means we can consider y_1, \ldots, y_n as coming from n independent random variables Y_1, \ldots, Y_n , where Y_i has the distribution of $Y|x_i$.

Comment: We do not assume that the x_i 's are distinct. If, for example, $x_1 = x_2$, then we are assuming that y_1 and y_2 are independent observations from the same conditional distribution $Y|x_1$.

Since y_1, \ldots, y_n are random variables, so is $\hat{\eta}_1$ -- but it depends on the choice of x_1, \ldots, x_n , so we can talk about the conditional distribution $\hat{\eta}_1 | x_1, \ldots, x_n$.

Expected value of $\hat{\eta}_1$ (as the y's vary):

$$E(\hat{\eta}_{1}|\mathbf{x}_{1}, \dots, \mathbf{x}_{n}) = E(\sum_{i=1}^{n} c_{i} y_{i} | \mathbf{x}_{1}, \dots, \mathbf{x}_{n})$$

$$= \sum_{i=1}^{n} c_{i} y_{i} | \mathbf{x}_{1}, \dots, \mathbf{x}_{n})$$

$$= \sum_{i=1}^{n} c_{i} E(y_{i} | \mathbf{x}_{1}, \dots, \mathbf{x}_{n})$$

$$= \sum_{i=1}^{n} c_{i} E(y_{i} | \mathbf{x}_{i}) \qquad \text{(since } y_{i} \text{ depends only on } \mathbf{x}_{i})$$

$$= \sum_{i=1}^{n} c_{i} (\eta_{0} + \eta_{1} \mathbf{x}_{i}) \qquad \text{(model assumption)}$$

$$= \eta_{0} \sum_{i=1}^{n} c_{i} + \eta_{1} \sum_{i=1}^{n} c_{i} \mathbf{x}_{i}$$

$$= \eta_{0} 0 + \eta_{1} 1 = \eta_{1}$$

<u>Thus</u>: $\hat{\eta}_1$ is an unbiased estimator of η_1 .

Variance of $\hat{\eta}_1$ (as the y's vary):

$$\operatorname{Var}(\hat{\eta}_{1}|\mathbf{x}_{1}, \dots, \mathbf{x}_{n}) = \operatorname{Var}(\sum_{i=1}^{n} c_{i} y_{i} | \mathbf{x}_{1}, \dots, \mathbf{x}_{n})$$
$$= \sum_{i=1}^{n} c_{i}^{2} \operatorname{Var}(y_{i}|\mathbf{x}_{1}, \dots, \mathbf{x}_{n})$$

$$= \sum_{i=1}^{2} c_{i}^{2} \operatorname{Var}(y_{i}|x_{i}) \qquad \text{(since } y_{i} \text{ depends only on } x_{i})$$

$$= \sum_{i=1}^{2} c_{i}^{2} \sigma^{2}$$

$$= \sigma^{2} \sum_{i=1}^{2} \left(\frac{(x_{i} - \overline{x})}{SXX} \right)^{2} \qquad \text{(definition of } c_{i})$$

$$= \frac{\sigma^{2}}{\left(SXX \right)^{2}} \sum_{i=1}^{2} (x_{i} - \overline{x})^{2}$$

$$= \frac{\sigma^{2}}{SXX}$$

For short:
$$Var(\hat{\eta}_1) = \frac{\sigma^2}{SXX}$$

$$\therefore \text{ s.d.}(\hat{\eta}_1) = \frac{\sigma}{\sqrt{SXX}}$$

Comments: This is vaguely analogous to the sampling standard deviation for a mean \overline{y} :

s.d. (estimator) =
$$\frac{population\ standard\ deviation}{\sqrt{something}}$$

However, here the "something," namely SXX, is more complicated. However, we can still analyze this formula to see how the standard deviation varies with the conditions of sampling. For \overline{y} , the denominator is the square root of n, so we see that as n becomes larger, the sampling standard deviation of \overline{y} gets smaller. Here, recalling that $SXX = \sum (x_i - \overline{x})^2$, we reason that:

- If the x_i 's are far from \overline{x} , SXX is _____, so s.d.($\hat{\eta}_i$) is ____. If the x_i 's are close to \overline{x} , SXX is ____, so s.d.($\hat{\eta}_i$) is ____.

Thus if you are designing an experiment, choosing the x_i's to be _____ mean will result in a more precise estimate of $\hat{\eta}_1$. (Assuming the linear model fits!)

Expected value and variance of $\hat{\eta}_0$:

Using the formula $\hat{\eta}_0 = \sum_{i=1}^{n} (\frac{1}{n} - c_i \overline{x}) y_i$, calculations (left to the interested student) similar to those for $\hat{\eta}_1$ will show:

(So $\hat{\eta}_0$ is an unbiased estimator of η_0 .) • $E(\hat{\eta}_0) = \eta_0$

• Var
$$(\hat{\eta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{SXX} \right)$$
, so s.d $(\hat{\eta}_0) = \sigma \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{SXX}}$

Analyzing the variance formula:

- A larger \bar{x} gives a ______ variance for $\hat{\eta}_0$.
 - → Does this agree with intuition?
- A larger sample size tends to give a _____ variance for $\hat{\eta}_0$.
- The variance of $\hat{\eta}_0$ is (except when $\bar{x} < 1$) ______ than the variance of $\hat{\eta}_1$.
 - → Does this agree with intuition?
- The spread of the x_i 's affects the variance of $\hat{\eta}_0$ in the same way it affects the variance of $\hat{\eta}_1$.

Covariance of $\hat{\eta}_0$ and $\hat{\eta}_1$: Similar calculations (left to the interested student) will show

$$Cov(\hat{\boldsymbol{\eta}}_0, \hat{\boldsymbol{\eta}}_1) = -\sigma^2 \frac{\overline{x}}{SXX}$$

Thus:

- $\hat{\eta}_0$ and $\hat{\eta}_1$ are not independent (except when ______)
 - → Does this agree with intuition?
- The sign of $Cov(\hat{\eta}_0, \hat{\eta}_1)$ is opposite that of \bar{x} .
 - → Does this agree with intuition?

Estimating σ^2 : To use the variance formulas above for inference, we need to estimate σ^2 (= Var(Y|x_i), the same for all i).

First, some plausible reasoning: If we had lots of observations $y_{i_1}, y_{i_2}, ..., y_{i_m}$ from Ylx_i, then we could use the univariate standard deviation

$$\frac{1}{m-1} \sum_{i=1}^{m} (y_{i_j} - \bar{y}_i)^2$$

of these m observations to estimate σ^2 . (Here \overline{y}_i is the mean of $y_{i_1}, y_{i_2}, ..., y_{i_m}$, which would be our best estimate of E(Y| x_i) just using $y_{i_1}, y_{i_2}, ..., y_{i_m}$)

We don't typically have lots of y's from one x_i , so we might try (reasoning that $\hat{E}(Y | x_i)$) is our best estimate of $E(Y | x_i)$)

$$\frac{1}{n-1} \sum_{i=1}^{n} [y_i - \hat{E}(Y \mid x_i)]^2$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} \hat{e}_i^2$$

$$= \frac{1}{n-1} RSS.$$

However (just as in the univariate case, we need a denominator n-1 to get an unbiased estimator), a lengthy calculation (omitted) will show that

$$E(RSS|x_1, ..., x_n) = (n-2) \sigma^2$$

(where the expected value is over all samples of the y_i 's with the x_i 's fixed)

Thus we use the estimate

$$\hat{\sigma}^2 = \frac{1}{n-2}RSS$$

to get an unbiased estimator for σ^2 :

$$E(\hat{\sigma}^2|x_1,\ldots,x_n)=\sigma^2.$$

[If you like to think heuristically in terms of losing one degree of freedom for each calculation from data involved in the estimator, this makes sense: Both $\hat{\eta}_0$ and $\hat{\eta}_1$ need to be calculated from the data to get RSS.]

Standard Errors for $\hat{\eta}_0$ and $\hat{\eta}_1$: Using

$$\hat{\sigma} = \sqrt{\frac{RSS}{n-2}}$$

as an estimate of σ in the formulas for s.d $(\hat{\eta}_0)$ and s.d $(\hat{\eta}_1)$, we obtain the *standard errors*

s.e.
$$(\hat{\eta}_1) = \frac{\hat{\sigma}}{\sqrt{SXX}}$$

and

s.e.
$$(\hat{\eta}_0) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{SXX}}$$

as estimates of s.d ($\hat{\eta}_{\rm l})$ and s.d ($\hat{\eta}_{\rm 0}),$ respectively.