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STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS 
 
Situation: 

Assumption:  E(Y|x) = η0 + η1x (linear mean function) 
 

Data:  (x1, y1), (x2, y2), … , (xn, yn) 
 
Least squares estimator: 

! 

ˆ E (Y|x) = 

! 

ˆ " 
0
 +

! 

ˆ " 
1
x, where 

 

  

! 

ˆ " 
1
 = 

! 

SXY

SXX
  

! 

ˆ " 
0
= 

! 

y  -

! 

ˆ " 
1

! 

x  

 
SXX = ∑ ( xi -

! 

x )2 = ∑ xi( xi -

! 

x ) 
SXY = ∑ ( xi -

! 

x ) (yi - 

! 

y ) = ∑ ( xi -

! 

x ) yi 
 
Comment: If we also assume e|x (equivalently, Y|x) is normal with constant variance, 
then the least squares estimates are the same as the maximum likelihood estimates of η0 
and η1. 
 
Properties of 

! 

ˆ " 
0
 and 

! 

ˆ " 
1
: 

 

1) 

! 

ˆ " 
1
 = 

! 

SXY

SXX
 = 

! 

(xi " x )yi

i=1

n

#

SXX
 = 

! 

(xi " x )

SXX
yi

i=1

n

#  = 

! 

ciyi
i=1

n

"   

where ci = 

! 

(x
i
" x )

SXX
 

  
Thus: If the xi's are fixed (as in the blood lactic acid example), then 

! 

ˆ " 
1
 is a linear 

combination of the yi's. 
 
Note: Here we want to think of each yi as a random variable with distribution Y|xi. Thus, 
if the yi’s are independent and each Y|xi is normal, then 

! 

ˆ " 
1
 is also normal. If the Y|xi's are 

not normal but n is large, then 

! 

ˆ " 
1
 is approximately normal. This will allow us to do 

inference on 

! 

ˆ " 
1
. (Details later.) 

 

2) ∑ ci =  ∑

! 

(x
i
" x )

SXX
 = 

! 

1

SXX
(x

i
" x )#  = 0 (as seen in establishing the alternate 

expression for SXX) 
 

3) ∑ xi ci = ∑ xi 

! 

(x
i
" x )

SXX
 = 

! 

1

SXX
x

i
(x

i
" x )#  = 

! 

SXX

SXX
 = 1. 

 
Remark: Recall the somewhat analogous properties for the residuals 

! 

ˆ e 
i
.  
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4) 

! 

ˆ " 
0
= 

! 

y  -

! 

ˆ " 
1

! 

x  = 

! 

1

n
yi

i=1

n

" - 

! 

ciyi

i=1

n

" x  = 

! 

(
1

n
" cix )yi

i=1

n

# , also a linear combination of the yi's, 

hence … 
 

5) The sum of the coefficients in (4) is 

! 

(
1

n
" c

i
x )

i=1

n

#  = 

! 

(
1

n
) " x c

i

i=1

n

#
i=1

n

#  = 

! 

n(
1

n
) " x 0  = 1. 

 
Sampling distributions of 

! 

ˆ " 
0
 and 

! 

ˆ " 
1
: 

 
Consider x1, … , xn as fixed (i.e., condition on x1, … , xn). 
 
Model Assumptions ("The" Simple Linear Regression Model Version 3): 

 
• E(Y|x) = η0 + η1x      (linear mean function) 
• Var(Y|x) = σ2 (Equivalently, Var(e|x) = σ2)   (constant variance) 
• (NEW)   y1, … , yn are independent observations.   (independence) 
 
The new assumption means we can consider y1, … , yn as coming from n independent 
random variables Y1, … , Yn, where Yi has the distribution of Y|xi. 
 
Comment: We do not assume that the xi's are distinct. If, for example, x1 = x2, then we 
are assuming that y1 and y2 are independent observations from the same conditional 
distribution Y|x1. 

 
Since y1, … , yn are random variables, so is 

! 

ˆ " 
1
 -- but it depends on the choice of x1, … , 

xn, so we can talk about the conditional distribution 

! 

ˆ " 
1
|x1, … , xn.  

 
Expected value of 

! 

ˆ " 
1
 (as the y's vary): 

 

 E(

! 

ˆ " 
1
|x1, … , xn) = E(

! 

ciyi
i=1

n

" |x1, … , xn) 

   = ∑ci E(yi|x1, … , xn) 
   = ∑ci E(yi|xi)  (since yi depends only on xi) 
   = ∑ci (η0 + η1xi) (model assumption) 
   = η0∑ci + η1∑ci xi 

    = η00 + η11 = η1 
 
Thus: 

! 

ˆ " 
1
 is an unbiased estimator of η1. 

 
Variance of 

! 

ˆ " 
1
 (as the y's vary): 

 

Var(

! 

ˆ " 
1
|x1, … , xn) = Var(

! 

ciyi
i=1

n

" |x1, … , xn) 

   = ∑ci
2 Var(yi|x1, … , xn) 
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   = ∑ci
2 Var(yi|xi)  (since yi depends only on xi) 

   = ∑ci
2σ2 

   = σ2∑ci
2 

   = σ2∑

! 

(x
i
" x )

SXX

# 

$ 
% 

& 

' 
( 
2

  (definition of ci) 

   = 

! 

" 2

SXX( )
2

(x
i
# x )

2$  

   = 

! 

" 2

SXX
 

 

 For short: Var(

! 

ˆ " 
1
) = 

! 

" 2

SXX
 

 

  ∴ s.d.( 

! 

ˆ " 
1
) =

! 

"

SXX
 

 
Comments:  This is vaguely analogous to the sampling standard deviation for a mean 

! 

y : 

 s.d. (estimator) = 

! 

population standard deviation

something
 

However, here the "something," namely SXX, is more complicated. However, we can 
still analyze this formula to see how the standard deviation varies with the conditions of 
sampling. For 

! 

y , the denominator  is the square root of n, so we see that as n becomes 
larger, the sampling standard deviation of 

! 

y  gets smaller. Here, recalling that  
SXX = ∑ ( xi -

! 

x )2, we reason that: 
• If the xi's are far from 

! 

x , SXX is ________, so s.d.( 

! 

ˆ " 
1
) is ________. 

• If the xi's are close to 

! 

x , SXX is ________, so s.d.( 

! 

ˆ " 
1
) is ________. 

Thus if you are designing an experiment, choosing the xi's to be _________ from their 
mean will result in a more precise estimate of 

! 

ˆ " 
1
. (Assuming the linear model fits!) 

 
Expected value and variance of 

! 

ˆ " 
0
: 

 

Using the formula 

! 

ˆ " 
0
= 

! 

(
1

n
" cix )yi

i=1

n

# , calculations (left to the interested student) similar 

to those for 

! 

ˆ " 
1
 will show: 

• E(

! 

ˆ " 
0
) = η0  (So 

! 

ˆ " 
0
 is an unbiased estimator of η0.) 

• Var (

! 

ˆ " 
0
) = 

! 

" 2 1

n
+

x 
2

SXX

# 

$ 
% % 

& 

' 
( ( , so  

s.d (

! 

ˆ " 
0
) = 

! 

"
1

n
+

x 
2

SXX
 

 
 
 



 4 

Analyzing the variance formula: 
• A larger 

! 

x  gives a ____________ variance for 

! 

ˆ " 
0
. 

→ Does this agree with intuition? 
• A larger sample size tends to give a ____________ variance for 

! 

ˆ " 
0
. 

 
 
• The variance of 

! 

ˆ " 
0
 is (except when 

! 

x  < 1)  _______________ than the variance of 

! 

ˆ " 
1
. 

→ Does this agree with intuition? 
• The spread of the xi's affects the variance of 

! 

ˆ " 
0
 in the same way it affects the variance 

of 

! 

ˆ " 
1
. 

 
Covariance of 

! 

ˆ " 
0
 and

! 

ˆ " 
1
: Similar calculations (left to the interested student) will show 

 

 Cov(

! 

ˆ " 
0
,

! 

ˆ " 
1
) = 

! 

"#
2 x 

SXX
 

 
 Thus: 
• 

! 

ˆ " 
0
 and

! 

ˆ " 
1
 are not independent (except when ____________________ ) 

→ Does this agree with intuition? 
• The sign of Cov(

! 

ˆ " 
0
,

! 

ˆ " 
1
) is opposite that of 

! 

x . 
→ Does this agree with intuition? 

 
Estimating σ2: To use the variance formulas above for inference, we need to estimate σ2 
(= Var(Y|xi), the same for all i). 
 
 First, some plausible reasoning: If we had lots of observations 

! 

yi1 , yi2 , ...,yim  from 
Y|xi, then we could use the univariate standard deviation  

! 

1

m "1
(yi j

" y i
j=1

m

# )
2   

of these m observations to estimate σ2. (Here 

! 

y i  is the mean of 

! 

yi1 , yi2 , ...,yim , which would 
be our best estimate of E(Y| xi) just using 

! 

yi1 , yi2 , ...,yim  ) 
 We don't typically have lots of y's from one xi, so we might try (reasoning that 

! 

ˆ E (Y | x
i
) ) is our best estimate of E(Y|xi)) 

  

! 

1

n "1
[yi "

ˆ E (Y | xi

i=1

n

# )]
2  

   = 

! 

1

n "1
ˆ e 

i

2

i=1

n

#  

     

   =

! 

1

n "1
RSS . 
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However (just as in the univariate case, we need a denominator n-1 to get an unbiased 
estimator), a lengthy calculation (omitted) will show that  
 
  E(RSS| x1, … , xn)  = (n-2) σ2   

(where the expected value is over all samples of the yi's with the xi's fixed) 
 
Thus we use the estimate 

   

! 

ˆ " 
2 = 

! 

1

n " 2
RSS  

to get an unbiased estimator for σ2: 
 
  E(

! 

ˆ " 
2|x1, … , xn) = σ2. 

 
[If you like to think heuristically in terms of losing one degree of freedom for each 
calculation from data involved in the estimator, this makes sense: Both 

! 

ˆ " 
0
 and

! 

ˆ " 
1
 need to 

be calculated from the data to get RSS.] 
 
Standard Errors for 

! 

ˆ " 
0
 and

! 

ˆ " 
1
: Using  

 

! 

ˆ "  = 

! 

RSS

n " 2
 

 
as an estimate of σ in the formulas for s.d (

! 

ˆ " 
0
) and s.d(

! 

ˆ " 
1
), we obtain the standard errors 

 

  s.e. (

! 

ˆ " 
1
) = 

! 

ˆ " 

SXX
 

and 

  s.e.( 

! 

ˆ " 
0
) = 

! 

ˆ " 
1

n
+

x 
2

SXX
 

 
as estimates of s.d (

! 

ˆ " 
1
) and s.d (

! 

ˆ " 
0
), respectively. 

 
 
 


