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SUBMODELS (NESTED MODELS) AND ANALYSIS OF VARIANCE OF 
REGRESSION MODELS 

 
We will assume we have data (x1, y1), (x2, y2), … , (xn, yn) and make the usual 
assumptions of independence and normality. 
 
Our model has 3 parameters: 

E(Y|x) = η0 + η1x (Two parameters: η0 and η1) 
Var(Y|x) = σ2 (One parameter: σ) 
 

We will call this the full model. Many  hypothesis tests on coefficients can be 
reformulated as test of the full model against a submodel – that is, a special case of the 
full model obtained by specifying certain of the parameters or certain relationships 
between parameters. 
 
Examples:  
a.  NH: η1 = 1 
 AH: η1 ≠ 1 
 
 AH corresponds to the full model (with three parameters, including η1). What 
submodel does NH correspond to? How many parameters does it have? 
 
 
b. NH: η1 = 0 
 AH: η1 ≠ 0 
 
 AH corresponds to the full model. What submodel does NH correspond to? How 
many parameters does it have? 
 
 
c. NH: η0 = 0 
 AH: η0 ≠ 0 
 
 AH corresponds to the full model. What submodel does NH correspond to? How 
many parameters does it have? 
 
Any specification of or relation among some of the parameters would give a submodel – 
and a conceivable hypothesis test. 
 
Examples: What is the null hypothesis of the corresponding hypothesis test? 
d.  E(Y|x) = 2 + η1x  
 Var(Y|x) = σ2  
 
e.  E(Y|x) = η0 + η0x  
 Var(Y|x) = σ2  
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We have discussed how to "fit" the full model from data using least squares. We can also 
fit a submodel by least squares. 
 
Example 1: To fit the submodel E(Y|x) = 2 + η1x  

Var(Y|x) = σ2, 
consider lines y = 2 + h1x and minimize  

RSS(h1) = ∑ di
2 = ∑ [yi - (2 + h1xi)]2 

to get η1.       [Draw a picture.] 
 
Note: For this example, yi - (2 + h1xi) = (yi - 2) - h1xi, 
so fitting this model is equivalent to fitting the model  

E(Y|x) = η1x  
Var(Y|x) = σ2 

to the transformed data (x1, y1 - 2), (x2, y2 - 2), … , (xn, yn - 2) 
 
 

Example 2: For the submodel  E(Y|x) = η0  
Var(Y|x) = σ2, 

we minimize RSS(h0) = ∑ di
2 = ∑ (yi - h0)2  [Draw a picture.] 

a. Carry out details 
b. Result: h0 = 

! 

y  -- the same as the univariate estimate. 
c. Show that this is also the same as setting 

! 

ˆ " 
1
 = 0 in the least squares fit for the full 

model. 
Caution: This phenomenon does not always happen, as the exercise below shows. 
 
Exercise: Try finding the least squares fit for the submodel 

  E(Y|x) = η1x  ("Regression through the origin") 
Var(Y|x) = σ2 

You should get a different formula for 

! 

ˆ " 
1
 from that obtained by setting 

! 

ˆ " 
0
 = 0 in the 

formula for the least squares fit for the full model. 
 
 
Generalizing: If we fit a submodel by Least Squares, we can define the residual sum of 
squares for the submodel: 
    RSSsub = ∑(yi -

! 

ˆ y i)
2,  

 
where 

! 

ˆ y i  = 

! 

ˆ E sub(Y|x) is the fitted value for the submodel. 
 
Example: For the submodel in Example 2, 

! 

ˆ y i  = 

! 

y  for each i, so 
 

RSSsub = ∑(yi -

! 

y )2 = SYY 
 
General Properties: (Stated without proof; true for multiple regression as well as simple 
regression) 
• RSSsub is a multiple of a χ2 distribution, with 
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• degrees of freedom dfsub = n - (# of terms estimated), and 

• 

! 

ˆ " 
sub

2  = 

! 

RSSsub

dfsub
 is an estimate of σ2 for the submodel. 

 
Thus we can do inference tests using a submodel rather than the full model. 
 
Another Perspective: 
 
Example: The submodel E(Y|x) = η0  

Var(Y|x) = σ2 
 
Testing this model against the full model is equivalent to performing a hypothesis test 
with 

  NH: η1 = 0  
  AH: η1 ≠ 0. 
 
This hypothesis test uses the t-statistic 

 t = 

! 

ˆ " 
1

s.e.( ˆ " 
1
)

 = 

! 

SXY
SXX

ˆ " 
SXX

 ~ t(n-2), 

 
where here 

! 

ˆ "  = 

! 

ˆ " full  is the estimate of σ for the full model. Note that 
 

  t2 = 

! 

SXY( )
2

SXX( )
2

ˆ " 2
SXX

 = 

! 

SXY( )
2

ˆ " 
2
(SXX )

 

 
Recall:  

  RSS = SYY - 

! 

(SXY )2

SXX
 

  RSS = RSSfull 
  SYY = RSSsub 
 
Thus 

  RSSsub - RSSfull = 

! 

(SXY )2

SXX
. 

so 
   

  t2 = 

! 

RSSsub " RSSfull

ˆ # 
2

 

 
F Distributions 
 
Recall: A t(k) random variable has the distribution of a random variable of the form 
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     where  
 
 
Thus 
  t2 ~     
 
Also, 
  Z2 ~  
 
Definition: An F-distribution F(ν1, ν2) with ν1 degrees of freedom in the numerator and  
ν2 degrees of freedom in the denominator is the distribution of a random variable of the 
form  

  

! 

W "
1

U "
2

  where  W ~ χ2(ν1) 

     U ~ χ2(ν2) 
    and U and W are independent. 
 
Thus:  

  t2 = 

! 

RSSsub " RSSfull

ˆ # 
2

 ~ F(1, n-2), 

so we could also do our hypothesis test (for η1)with an F-test. 
 
Example: Forbes data. 
 
 
Another way to look at the F-statistic: 
 

 F = 

! 

RSSsub " RSSfull( ) dfsub " df full( )
ˆ # full

2
 

 

  = 

! 

RSSsub " RSSfull( ) dfsub " df full( )
RSSfull df full

. 

 
i.e., F is the ratio of (the residual sum of squares for the submodel compared with the full 
model) and (the residual sum of squares for the full model) - - but with each divided by 
its degrees of freedom to "weight" them appropriately to get a tractable distribution. This 
illustrates the general case: 
 
Whenever we have a submodel (in multiple linear regression as well as simple linear 
regression),  
a. RSSsub (hence 

! 

ˆ " 
2

sub) will be a constant times a χ2 distribution, with degrees of freedom 
dfsub, which we then also refer to as the degrees of freedom of RSSsub and of 

! 

ˆ " 
2

sub. 
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b. 

! 

RSSsub " RSSfull( ) dfsub " df full( )
ˆ # full

2
 = 

! 

RSSsub " RSSfull( ) dfsub " df full( )
RSSfull df full

  

 
~ F(dfsub - dffull , dffull). 

 
Thus we can use an F statistic for the hypothesis test  

NH: Submodel  
AH: Full model 

 


