WEIGHTED LEAST SQUARES

Model assumptions:

- 1. $E(Y|\underline{x_i}) = \eta^T \underline{u_i}$ (linear mean function -- as for ordinary least squares)
- 2. $Var(Y|\underline{x}_i) = \sigma^2/w_i$, where the w_i 's are known, positive constants (called *weights*) (Different from OLS!)

Observe:

- w_i is inversely proportional to $Var(Y|\underline{x}_i)$. This is sometimes helpful in getting suitable w_i 's.
- the w_i's aren't unique we could multiply all of them by a constant c, and divide σ by \sqrt{c} to get an equivalent model.

For WLS, the *error* is defined as

$$e_i = \sqrt{w_i} [Y | \underline{x}_i - \underline{\eta}^T \underline{u}_i]$$
 (Different from OLS!)

Then (exercise)

$$E(e_i) = 0$$
$$Var(e_i) = \sigma^2$$

Reformulating (1) in terms of errors:

1':
$$Y|\underline{\mathbf{x}}_i = \underline{\mathbf{\eta}}^T \underline{\mathbf{u}}_i + \mathbf{e}_i / \sqrt{w_i}$$

<u>Note</u>: WLS is not a universal remedy for non-constant variance, since weights are needed. But it is useful in many types of situations, e.g.,

- A. If $Y|\underline{x}_i$ is the <u>sum</u> of m_i independent observations, each with variance σ^2 , then $Var(Y|\underline{x}_i) = \underline{\hspace{1cm}}$, so we could take $w_i = \underline{\hspace{1cm}}$.
- B. If $Y|\underline{x}_i$ is the <u>average</u> of m_i independent observations, each with variance σ^2 , then $Var(Y|\underline{x}_i) = \underline{\hspace{1cm}}$, so we could take $w_i = \underline{\hspace{1cm}}$.
- C. Sometimes visual or other evidence suggests a pattern of how $Var(Y|\underline{x_i})$ depends on x_i . For example, if it looks like $\sqrt{Var(Y|x_i)}$ is a linear function of x_i [Sketch a picture of this!], then we can fit a line to the data points (x_i, s_i) , where s_i = sample standard deviation of observations with x value x_i . If we get

$$\hat{s}_i = \hat{\gamma}_0 + \hat{\gamma}_1 x_i$$
, try $W_{i=}$ _____

D. Sometimes theoretical considerations may suggest a choice of weights. (e.g., theoretical considerations might suggest that the conditional distributions are Poisson, which implies that their variances are equal to their means. This would suggest taking $w_i = \underline{\hspace{1cm}}$.)

E. Weighted least squares is also useful for other purposes – e.g., in calculating the lowess estimate, lines are fit so that points at the ends of the range count less than points at the middle of the range.

A WLS model may be fit by least squares: Find $\hat{\eta}$ to minimize the "weighted residual sum of squares"

$$\begin{split} RSS(\underline{h}) &= \sum w_i (y_i - \underline{h}^T \underline{u}_i)^2 \\ \underline{\hat{\eta}} \text{ is called the "WLS estimate" of the coefficients.} \end{split}$$

Comments:

- a. If all $w_i = 1$, we get _____.
 b. The larger w_i is, the more the i^{th} observation "counts" (and the ______er the variance at x_i – think of the geese example.)
- c. $RSS(\underline{h}) = \sum_{i=1}^{n} [\sqrt{w_i} y_i \underline{h}^T (\sqrt{w_i} \underline{u}_i)]^2$, so we could get $\hat{\eta}$ by using OLS to regress the $\sqrt{w_i}$ y_i's on the $\sqrt{w_i}$ u_i's, but, we would need to fit without an intercept, since the first component of $\sqrt{w_i}$ $\underline{\mathbf{u}}_i$ is. However, most software will fit a WLS if given the weights.

Example: Coin data.