DIAGNOSTICS

1

Questions:

- Are model assumptions satisfied?
- Is the result unduly influenced by one or a small number of points?

We've discussed some techniques to study these questions:

- Normal plots
- Scatterplots
- Lowess, lowess±SD
- Remove linear trend
- Leverage identify some *potentially* influential points

More techniques:

Caution: Not guaranteed to catch all problems, but can catch some.

I. RESIDUAL PLOTS

Recall the error formulation of the OLS model:

Ordinary Linear:

Y| $\underline{\mathbf{x}} = \underline{\mathbf{n}}^{\mathrm{T}}\underline{\mathbf{u}} + \mathrm{el} \underline{\mathbf{x}}$ el $\underline{\mathbf{x}} \sim \mathrm{N}(0, \sigma^2)$, independent of $\underline{\mathbf{x}}$

Recall the Least Squares fits and residuals

OLS: $\hat{y}_i = \hat{y}^{\mathrm{T}} \underline{\mathbf{u}}_i$ $\hat{e}_i = \mathbf{y}_i - \hat{y}_i$

Intuitively, \hat{e}_i is an estimate of $e_i (= y_i - \underline{\eta}^T \underline{u}_i)$.

We know $E(e_i)$ and $E(\hat{e}_i)$ are both zero, so \hat{e}_i is an unbiased estimate of $E(e_i)$.

Thus it seems reasonable to plot the \hat{e}_i 's against various things to give some check on whether the model assumptions are reasonable.

However:

- $\operatorname{Var}(e_i | \underline{\mathbf{x}}_i) = \sigma^2$
- $\operatorname{Var}(\hat{e}_i | \underline{\mathbf{x}}_i) = \sigma^2 (1 \mathbf{h}_i)$, where $\mathbf{h}_i = \mathbf{i}^{\text{th}}$ leverage. (Section 7.6 of book)

3

Thus:

- If the h_i's are all small, then
 - $\operatorname{Var}(\hat{e}_i | \underline{\mathbf{x}}_i) \approx \operatorname{Var}(\mathbf{e}_i | \underline{\mathbf{x}}_i),$
 - so a plot using the \hat{e}_i 's should approximate a plot using the e_i 's.
- If the h_i's are all approximately equal, then Var(ê_i |<u>x</u>_i) is approximately a constant times Var(e_i |<u>x</u>_i), so a plot using the ê_i's should approximate a rescaled plot using the e_i's.

 But if the h_i's vary noticeably, then a plot using the ê_i's will not give a good approximation of a plot using the e_i's. In this case, use instead

studentized residuals
$$\frac{e_i}{\hat{\sigma}\sqrt{1-h_i}}$$
.

(These are automatic in some software; not in arc)

- Studentized residuals should have something near a standard normal distribution, so are helpful in identifying extreme cases.
- To form these in arc:
 - i. Select "Add to data set" from model menu. Select L1:Residuals and L2:Leverages
 - ii. Note that the variables L1.Residuals and L2.Leverages are added (Punctuation important!)
- iii. Use "Add a variate" on the data menu to define a new variable sr in terms of the newly added variables and the value of $\hat{\sigma}$ from the regression output.

Types of Residual Plots (roughly in order of importance)

- Against fitted values \hat{y}_i
- Against individual or pairs of predictors

5

- Against other possible predictors not in the model (especially time, location)
- Against individual terms other than predictors
- Against linear combinations of terms

Suggestions for Residual Plots for Specific Purposes

Checking linearity

Plot against fitted values \hat{y}_i . (Like "remove linear trend")

Checking constant variance

Plot against fitted values, predictors, pairs of predictors, other possible predictors.

Caution: What looks like non-constant variance can sometimes be caused by non-linearity.

Example: caution.lsp

Checking independence

Plot against other possible predictors (especially time, location)

Checking normality

Use a normal probability plot – using studentized residuals if warranted.

7

Checking for outliers:

Plot against fitted values, predictors, pairs of predictors

A "multipanel plot" can be useful.

II. COOK'S DISTANCE

Recall: An observation is *influential* if it has more of an effect on the OLS estimates than the other cases do.

With 1 or 2 terms, it's relatively easy to spot a potential influential point on the scatterplot and check if the point is influential. Leverage can help pick out x-outliers, which are potentially influential. *Cook's distance* can help check for influence more generally.

The idea:

- Delete the ith case and compute the least squares estimator without using the ith case.
- Evaluate this estimator at $\underline{\mathbf{x}}_{i}$, giving $\hat{y}_{(i),j}$

= the fit at \underline{x}_i , not using the ith case

•
$$\mathbf{D}_{i} = \frac{1}{k\hat{\sigma}^{2}} \sum_{i=1}^{n} (\hat{y}_{(i),j} - \hat{y}_{j})^{2}$$

measures the total influence of the ith case. (This can be expressed in terms of the coefficient estimates -- see more details in Section 15.2)

Rules of thumb in using D_i :

- Plot D_i vs case number.
- Examine cases that have relatively large D_i. (i.e., large relative to other values for these data)
- Examine cases with D_i > 0.5, and especially cases with D_i > 1.
- There is no hypothesis test using D_i.