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WEIGHTED LEAST SQUARES 

 

Recall:  

• We can fit least squares estimates just assuming 

a linear mean function.  

 

• Without the constant variance assumption, we 

can still conclude that the coefficient estimators 

are unbiased, but we can’t say anything about 

their variances; consequently, the inference 

procedures are not applicable. 

 

Moreover: If we fit least squares with non-constant 

variance, the values with larger variance typically 

have more influence on the result; values with lower 

variance typically are fit poorly. 

 

Example: Geese 

 

Recall:  

• Sometimes we can find transformations to 

achieve constant variance.  

• But sometimes we can’t do this without messing 

up the linear mean or normality assumptions.  

 

An alternative that works sometimes is weighted least 

squares. 
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Model Assumptions for Weighted Least Squares: 

 

1. E(Y|xi)  =  !T
ui  (linear mean function – same 

as for ordinary least squares) 

 

2. Var(Y|xi)  = "2
/wi, where the wi’s are known, 

positive constants (called weights)  

      (Different from OLS!) 

 

Observe:  

 

• wi is inversely proportional to Var(Y|xi). This is 

sometimes helpful in getting suitable wi’s. 

 

• the wi’s aren’t unique – we could multiply all of 

them by a constant c, and divide " 
by 

! 

c  to get 

an equivalent model. 
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For WLS, the error is defined as 

 

 ei = 

! 

w
i [ Y|xi  -  !

T
ui]    

       (Different from OLS!) 

 

Exercise: 

 

 E(ei) = 0   Var(ei) = "2
 

 

Reformulating (1) in terms of errors: 

 

 1’: Y|xi  =  !T
ui + ei/

! 

w
i  
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Note: WLS is not a universal remedy for non-

constant variance, since weights are needed. But it is 

useful in many types of situations.  

 

Examples: 

 

A. If Y|xi is the sum of mi independent 

observations v1, v2, …, vmi , each with variance 

"2
, then  

 

 Var(Y|xi)  = __________________ = ________,  

 

 so we could take wi = ___________. 

 

B. If Y|xi is the average of mi independent 

observations v1, v2, …, vmi , each with variance 

"2
, then  

 

 Var(Y|xi)  = __________________ = ________,  

 

 so we could take wi = ___________. 
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C. Sometimes visual or other evidence suggests a 

pattern of how Var(Y|xi) depends on xi.  

e.g., if it looks like 

! 

Var(Y | x
i
)  is a linear function 

of xi [Sketch a picture of this!], then we can fit a 

line to the data points (xi, si), where si = sample 

standard deviation of observations with x value 

xi. If we get 

   

 

! 

ˆ s 
i
= ˆ " 

0
+ ˆ " 

1
x

i, try wi = _______________________  

 

Caution: This involves looking at the data to 

decide on the supposedly “known” weights, 

which is iffy. A slightly better approach is to use 

wi’s as above, then “iterate” by using the 

standard errors calculate from the first WLS 

regression.  

 

D. Sometimes theoretical considerations may 

suggest a choice of weights.  

 

For example, if theoretical considerations 

suggest that the conditional distributions are 

Poisson, then the conditional variances are equal 

to the conditional means.  

 

This suggests taking wi = ______________. 
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E. Weighted least squares is also useful for other 

purposes. 

 

 e.g., in calculating the lowess estimate, lines 

 are fit so that points at the ends of the range 

 count less than points at the middle of the 

 range. 

 

 

Fitting WLS: A WLS model may be fit by least 

squares: Find 

! 

ˆ "  to minimize the “weighted residual 

sum of squares” 

 

 RSS(h) = #wi(yi – h
T
ui)

2
 

 

! 

ˆ "  is called the “WLS estimate” of the coefficients. 

 

 

Comments: 

 

a. If all wi = 1, we get ______________________. 

 

b. The larger wi is, the more the i
th 

observation 

“counts” (and the __________er the variance at 

xi – think of the geese example.)  
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c. RSS(h) = # [

! 

w
i yi – h

T
(

! 

w
i ui)]

2
,  

 

so we could get 

! 

ˆ "  (for WLS) by using OLS to 

regress the 

! 

w
i yi’s on the 

! 

w
i ui’s, but, we would 

need to fit without an intercept, since the first 

component of 

! 

w
i ui is not 1.  

 

In practice, most statistics software has a specific 

routine to fit a WLS; weights need to be stored. 

 

Example: Coin data. 

 

Residuals in WLS:  

 

 Recall errors in WLS: 

       ei = 

! 

w
i [ Y|xi  -  !

T
ui]. 

 

Analogously, the residuals are defined as  

 

      

! 

ˆ e 
i  = 

! 

w
i ( yi  -  

! 

ˆ y i) 

 

Caution:  

 

 Some software provides only the unweighted 

residuals yi  -  

! 

ˆ y i; you need to multiply by the factors 

! 

w
i  in order to make residual plots (to be discussed 

shortly) 
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RSS and !
2
 estimates:  

 

  RSS = $wi( yi  -  

! 

ˆ y i)
2
 = $

! 

ˆ e 
i

2 

 

  

! 

ˆ " 2 = RSS/(n-k)  

  (estimate of !
2
, which is not the variance) 

 

Example: With the coins data, does 

! 

ˆ " 2 seem 

reasonable? 

 

Inference for WLS:  

 

 Proceeds similarly to inference for ordinary least 

squares. 

 

 Model assumptions for inference are (1) and (2) 

above, plus 

 

 3) Independence of observations, and 

 

 4) Normal conditional distributions. 
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Cautions in WLS inference: 

 

• Estimating variances to get weights (as in coins 

example) introduces more uncertainty. 

 

• The interpretation of R
2
 is questionable – some 

software doesn’t even give it. 

 

• Inference for means and prediction requires a 

weight (see pp. 209 – 210 for details) 

 

• Is prediction appropriate for the coins example? 
  

 

Diagnostics with WLS: 

 

 As for OLS, except use the WLS (weighted) 

residuals  

 

   

! 

ˆ e 
i  = 

! 

w
i ( yi  -  

! 

ˆ y i). 

 

 


