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        M 384G/374G/CAM384T 
CONDITIONAL AND MARGINAL MEANS AND VARIANCES 
 
I. Question: How are conditional means E(Y|X) and marginal means E(Y) related? 
 
Simple example: 

Population consisting of n1 men, n2 women. 
Y = height 
X = sex 

Categorical, two values: Male, Female 
 
So there are two conditional means: 

E(Y|male) = (Sum of all men’s heights)/n1 
E(Y|female) =  (Sum of all women’s heights)/n2 

Then           
Sum of all men’s heights = n1E(Y|male) 
Sum of all women's heights = n2 E(Y| female) 

 
The marginal mean is  

E(Y) = (Sum of all heights)/(n1 + n2) =  
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(Sum of men' s heights) + (Sum of women 's heights)
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n1E(Y | male) + n2E(Y | female)
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E(Y| female) 

= (proportion of males)( E(Y| male) + (proportion of females)( E(Y| female) 
 
= (probability of male)( E(Y| male) + (probability of female)( E(Y| female) 
 
Thus: The marginal mean is the weighted average of the conditional means, with 
weights equal to the probability of being in the subgroup determined by the 
corresponding value of the conditioning variable. 
 
Similar calculations show: If we have a population made up of m subpopulations 
pop1, pop2, …, popm (equivalently, if we are conditioning on a categorical variable 
with m values -- e.g., the age of a fish), then 
 

  E(Y) = 

! 

Pr(popk )E(Y | popk)
k=1

m

"   

 
e.g., for our fish, popk = fish of age k, and  
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  E(length) = 

! 

Pr(Age = k)E(Length | Age = k)
k=1

6

"  

Rephrasing in terms of the categorical variable X defining the subpopulations, 
 

  E(Y) = 

! 

Pr(x)E(Y | X = x)
all values x of X

"  

 
Stated in words: 
 
 
 
 
The analogue for conditioning on a continuous variable X is: 
 
  E(Y) = 

! 

fX (x)E ( Y | x)dx"#

#

$ , 
 
where fX(x) is the probability density function (pdf) of X. 
 

 
Note: 
1. There are analogous results for conditioning on more than one variable. 
 
2. The analogous result for sample means is 
   
  

! 

y  =  
 
 
 
 
II. A second (related) relationship between marginal and conditional means for 
populations: 
 
Consider E(Y|X) as a new random variable U as follows: 
 Randomly pick an x from the distribution of X. 
 The new r.v. U has value E(Y|X = x). 
 
Example: Y = height, X = sex 
 Randomly pick a person from the population in question. 

 

! 

U =
µ f = E(Y | X = female) if the person is female

µm = E(Y | X = male) if the person is male

" 
# 
$ 

 

 
Question to think about: What might cause P(U = u) to be high? [Hint: There are two 
ways this might arise] 
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Consider the expected value of this new random variable. (e.g., the expected value of the 
mean height for the sex of a randomly selected person from the given population. In this 
case, we would expect E(U) to depend on the proportion of the population which is of 
each sex.) 
 
If U is discrete, then  

! 

E(U ) = P(u)u
All possible

values of U

"     [Why?] 

 
Example: For U = E(height | sex), the values taken on by U are  
 
  ______________   and _______________, 
 
 with respective probabilities __________ and _____________, 
 
 so E(U) = ________________________________________, 
 
 which from Part I is just _____________________________ . 
 
In other words, 
 E(E(ht|sex) =  
 
The same reasoning works in general, showing that: 
 
The expected value of the conditional means is the weighted average of the conditional 
means, which from Part 1 is just the marginal mean 
i.e.,   

E(E(Y|X)) = weighted average of conditional means 
= E(Y) 
 

III. CONDITIONAL AND MARGINAL VARIANCE 
 
Marginal Variance: The definition of the (population) (marginal) variance of a random 
variable Y is 
 
 Var(Y) = E([Y - E(Y)]2 ) 
 
What does this say in words (and pictures)? 
 
There is another formula for Var(Y) that is sometimes useful in computing variances or 
proving things about them. It can be obtained by multiplying out the squared expression 
in the definition: 
 
 Var(Y) = E([Y - E(Y)]2 ) = E(Y2 - 2YE(Y) + [E(Y)]2) 
 
  = ________________________________________________________  
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(Fill in details, and say the final result in words!) 
 
Conditional Variance: Similarly, if we are considering a conditional distribution Y|X, 
we define the conditional variance 
  
 Var(Y|X) = Variance of the conditional distribution Y|X 
 
   = E([Y - E(Y|X)]2 | X) 
 
(Note that both expected values here are conditional expected values.) 
 
What does this say in words (and pictures)? 
 
Exercise: Derive another formula for the conditional variance, analogous to the second 
formula for the marginal variance. (And say it in words!) 
 
Conditional Variance as a Random Variable: As  with E(Y|X), we can consider 
Var(Y|X) as a random variable. For example, if Y = height and X =  sex for persons in a 
certain population, then Var(height | sex) is the variable which assigns to each person in 
the population the variance of height for that person's sex. 
 
IV. CONNECTING MEANS AND VARIANCES 
 
Expected Value of the Conditional Variance: Since Var(Y|X) is a random variable, we 
can talk about its expected value. Using the formula Var(Y|X) = E(Y2|X) - [E(Y|X)]2, we 
have 
 E(Var(Y|X)) = E(E(Y2|X)) - E([E(Y|X)]2) 
 
We have already seen that the expected value of the conditional expectation of a random 
variable is the expected value of the original random variable, so applying this to Y2 
gives 
 

(*) E(Var(Y|X)) = E(Y2) - E([E(Y|X)]2) 
 
Variance of the Conditional Expected Value: For what comes next, we will need to 
consider the variance of the conditional expected value. Using the second formula for 
variance, we have 
 
 Var(E(Y|X)) = E([E(Y|X)]2) - [E(E(Y|X))]2 
 
Since E(E(Y|X)) = E(Y), this gives 
 
 (**)Var(E(Y|X)) = E([E(Y|X)]2) - [E(Y)]2. 
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Putting It Together: 
 
Note that (*) and (**) both contain the term E([E(Y|X)]2), but with opposite signs. So 
adding them gives: 
 
  E(Var(Y|X)) + Var(E(Y|X)) = E(Y2) - [E(Y)]2, 
 
which is just Var(Y). In other words, 
 
 (***) Var(Y) = E(Var(Y|X)) + Var(E(Y|X)). 
 
In words: The marginal variance is the sum of the expected value of the conditional 
variance and the variance of the conditional means. 
 
Consequences:  
 
1) This says that two things contribute to the marginal (overall) variance: the expected 
value of the conditional variance, and the variance of the conditional means. (See 
Exercise) Moreover, Var(Y) = E(Var(Y|X)) if and only if Var(E(Y|X)) = 0. What would 
this say about E(Y|X)?  
 
2) Since variances are always non-negative, (***) implies  
 
  Var(Y) ≥ E(Var(Y|X)). 
 
3) Since Var(Y|X) ≥ 0, E(Var(Y|X)) must also be ≥ 0. (Why?). Thus (***) implies  
 
  Var(Y) ≥  Var(E(Y|X)). 
 
Moreover, Var(Y) = Var(E(Y|X)) if and only if E(Var(Y|X)) = 0. What would this imply 
about Var(Y|X) and about the relationship between Y and X? 
 
4) Another perspective on (***) (cf. Textbook, pp. 36 - 37): 
 
Note that: 
 i) E(Var(Y|X) is a weighted average of Var(Y|X) 
 ii) Var(E(Y|X) = E([E(Y|X) - E(E(Y|X))]2) 
   = E([E(Y|X) - (E(Y)]2),  

which is a weighted average of [E(Y|X) - (E(Y)]2 

 
 Thus, (***) says that Var(Y) is a weighted mean of Var(Y|X) plus a weighted 
mean of [E(Y|X) - (E(Y)]2 (and is a weighted mean of Var(Y|X) if and only if all 
conditional expected values E(Y|X) are equal to the marginal expected value E(Y).) 
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EXERCISE: Which contributes most to Var(Y): Var(E(Y|X)) or E(Var(Y|X))? 
 
A. 
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