ESTIMATING CONDITIONAL MEANS

Model Assumptions: Linear mean, constant variance, independence, and normality.

Sampling Distribution of Estimate of Conditional Mean:

- $\hat{\mathrm{E}}(\mathrm{Y} \mid \mathrm{x})=\hat{\eta}_{0}+\hat{\eta}_{1} \mathrm{x}$ is our estimate of $\mathrm{E}(\mathrm{Y} \mid \mathrm{x})$. Note that this is a random variable (varying according to our choice of y_{i} 's), so has a sampling distribution.
- Since $\hat{\eta}_{0}$ and $\hat{\eta}_{1}$ are linear combinations of the y_{i} 's, so is $\hat{E}(\mathrm{Y} \mid \mathrm{x})$. Hence $\hat{\mathrm{E}}(\mathrm{Y} \mid \mathrm{x})$ has a normal distribution. (Why doesn't this follow just from normality of $\hat{\eta}_{0}$ and $\hat{\eta}_{1}$?)
- $\mathrm{E}\left(\hat{\mathrm{E}}(\mathrm{Y} \mid \mathrm{x}) \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{E}\left(\hat{\eta}_{0}+\hat{\eta}_{1} \mathrm{x} \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$

$$
\begin{aligned}
& =\mathrm{E}\left(\hat{\eta}_{0} \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{E}\left(\hat{\eta}_{1} \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{x} \\
& =\eta_{0}+\eta_{1} \mathrm{x}=\mathrm{E}(\mathrm{Y} \mid \mathrm{x})
\end{aligned}
$$

So $\hat{\mathrm{E}}(\mathrm{Y} \mid \mathrm{x})$ is an unbiased estimator of $\mathrm{E}(\mathrm{Y} \mid \mathrm{x})$.

- Calculations (left to the interested reader; you need to consider covariances) will show that

$$
\operatorname{Var}\left(\hat{\mathrm{E}}(\mathrm{Y} \mid \mathrm{x}) \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\sigma^{2}\left(\frac{1}{n}+\frac{(x-\bar{x})^{2}}{S X X}\right)
$$

Comments:

1. What does this say when $\mathrm{x}=0$?
2. The further x is from \bar{x}, the \qquad the variance of the conditional mean estimate.
3. How does $\operatorname{Var}(\hat{\mathrm{E}}(\mathrm{Y} \mid \mathrm{x}))$ depend on n and the spread of the x_{i} 's?

Define the standard error of $\hat{E}(\mathrm{Y} \mid \mathrm{x})$:

$$
\text { s.e }(\hat{\mathrm{E}}(\mathrm{Y} \mid \mathrm{x}))=\hat{\sigma} \sqrt{\frac{1}{n}+\frac{(x-\bar{x})^{2}}{S X X}}
$$

As with $\hat{\eta}_{0}$ and $\hat{\eta}_{1}$, one can show that (under our model assumptions)

$$
\frac{\hat{E}(Y \mid x)-E(Y \mid x)}{\text { s.e. }(\hat{E}(Y \mid x))} \sim t(n-2),
$$

so we can use this as a test statistic to do inference on $\mathrm{E}(\mathrm{Y} \mid \mathrm{x})$.

Confidence Bands

If we plot the least squares regression line, and then for each point (x, y) on the line plot the points $(x, y \pm \operatorname{s.e}(\hat{\mathrm{E}}(\mathrm{Y} \mid \mathrm{x})))$, we will get two curves, with equations

$$
\mathrm{y}=\hat{\eta}_{0}+\hat{\eta}_{1} \mathrm{x} \pm \hat{\sigma}^{\frac{1}{n}+\frac{(x-\bar{x})^{2}}{S X X}} .
$$

What kinds of curves are these? We will answer this a little more generally, looking at curves of the form
(*) $\mathrm{y}=\hat{\eta}_{0}+\hat{\eta}_{1} \mathrm{X} \pm c \sqrt{\frac{1}{n}+\frac{(x-\bar{x})^{2}}{S X X}}$,
for some constant c . These are called confidence bands. For example, if we choose $\mathrm{c}=$ $\mathrm{t} \hat{\sigma}$, where t is the $95^{\text {th }}$ percentile for the $\mathrm{t}(\mathrm{n}-2)$ distribution, then the curves will show the 90% confidence intervals for $\hat{\mathrm{E}}(\mathrm{Y} \mid \mathrm{x})$ as x varies.

Example of confidence bands from Minitab:

Another example

We need the following criterion for determining what type of curve a quadratic equation in x and y describes:

Given the quadratic equation

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

if the discriminant $\mathrm{B}^{2}-4 \mathrm{AC}$ is positive, then the graph of the equation is a hyperbola (or a pair of intersecting lines in the degenerate case). (For more information, see the Mathworld website at http://mathworld.wolfram.com/QuadraticCurveDiscriminant.html)

A little algebraic manipulation puts our equation (*) in the form

$$
\left(\mathrm{y}-\hat{\eta}_{0}-\hat{\eta}_{1} \mathrm{x}\right)^{2}=c^{2}\left(\frac{1}{n}+\frac{(x-\bar{x})^{2}}{S X X}\right)
$$

More algebra gives

$$
\mathrm{y}^{2}-2 \hat{\eta}_{1} \mathrm{xy}+\hat{\eta}_{1}^{2} \mathrm{x}^{2}-\frac{c^{2}}{S X X} x^{2}+(\text { terms of degree } 1 \text { and } 2)=0 .
$$

So $\mathrm{A}=\hat{\eta}_{1}^{2}-\frac{c^{2}}{S X X}, \mathrm{~B}=-2 \hat{\eta}_{1}$, and $\mathrm{C}=1$, giving

$$
\mathrm{B}^{2}-4 \mathrm{AC}=4 \hat{\eta}_{1}^{2}-4\left[\hat{\eta}_{1}^{2}-\frac{c^{2}}{S X X}\right]=\frac{c^{2}}{S X X}>0
$$

so the confidence bands are a hyperbola.
[Note: The least squares regression line is not one of the axes of the hyperbola, since the confidence bands are "equidistant " from the line vertically, but not in the perpendicular direction.]

