ESTIMATING CONDITIONAL MEANS

Model Assumptions: Linear mean, constant variance, independence, and normality.

Sampling Distribution of Estimate of Conditional Mean:

- $\hat{E}(Y|x) = \hat{\eta}_0 + \hat{\eta}_1 x$ is our estimate of E(Y|x). Note that this is a random variable (varying according to our choice of y_i 's), so has a sampling distribution.

•
$$E(\hat{E}(Y|x)|x_1, ..., x_n) = E(\hat{\eta}_0 + \hat{\eta}_1 x|x_1, ..., x_n)$$

= $E(\hat{\eta}_0 | x_1, ..., x_n) + E(\hat{\eta}_1 | x_1, ..., x_n)x$
= $\eta_0 + \eta_1 x = E(Y|x)$
So $\hat{E}(Y|x)$ is an unbiased estimator of $E(Y|x)$.

• Calculations (left to the interested reader; you need to consider covariances) will show that

$$\operatorname{Var}(\hat{\mathrm{E}}(\mathrm{Y}|\mathrm{x})|\;\mathrm{x}_{1},\ldots,\,\mathrm{x}_{n}) = \sigma^{2} \left(\frac{1}{n} + \frac{(x-\overline{x})^{2}}{SXX}\right)$$

Comments:

1. What does this say when x = 0?

2. The further x is from \overline{x} , the ______ the variance of the conditional mean estimate.

3. How does $Var(\hat{E}(Y|x))$ depend on n and the spread of the x_i 's?

Define the standard error of $\hat{E}(Y|x)$:

s.e
$$(\hat{E}(Y|x)) = \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x-\bar{x})^2}{SXX}}$$

As with $\hat{\eta}_0$ and $\hat{\eta}_1$, one can show that (under our model assumptions)

$$\frac{\hat{E}(Y \mid x) - E(Y \mid x)}{s.e.(\hat{E}(Y \mid x))} \sim t(n-2),$$

so we can use this as a test statistic to do inference on E(Y|x).

Confidence Bands

If we plot the least squares regression line, and then for each point (x,y) on the line plot the points $(x,y \pm s.e (\hat{E}(Y|x)))$, we will get two curves, with equations

$$\mathbf{y} = \hat{\eta}_0 + \hat{\eta}_1 \mathbf{x} \pm \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x - \overline{x})^2}{SXX}}$$

What kinds of curves are these? We will answer this a little more generally, looking at curves of the form

(*)
$$y = \hat{\eta}_0 + \hat{\eta}_1 x \pm c \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{SXX}},$$

for some constant c. These are called *confidence bands*. For example, if we choose $c = t\hat{\sigma}$, where t is the 95th percentile for the t(n-2) distribution, then the curves will show the 90% confidence intervals for $\hat{E}(Y|x)$ as x varies.

Example of confidence bands from Minitab:

Forbes data

Another example

We need the following criterion for determining what type of curve a quadratic equation in x and y describes:

Given the quadratic equation

 $Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0$,

if the *discriminant* B^2 - 4AC is positive, then the graph of the equation is a hyperbola (or a pair of intersecting lines in the degenerate case). (For more information, see the Mathworld website at <u>http://mathworld.wolfram.com/QuadraticCurveDiscriminant.html</u>)

A little algebraic manipulation puts our equation (*) in the form

$$(\mathbf{y} - \hat{\boldsymbol{\eta}}_0 - \hat{\boldsymbol{\eta}}_1 \mathbf{x})^2 = c^2 \left(\frac{1}{n} + \frac{(x - \overline{x})^2}{SXX} \right).$$

More algebra gives

$$y^{2} - 2\hat{\eta}_{1}xy + \hat{\eta}_{1}^{2}x^{2} - \frac{c^{2}}{SXX}x^{2} + (\text{terms of degree 1 and 2}) = 0.$$

So A =
$$\hat{\eta}_1^2 - \frac{c^2}{SXX}$$
, B = - $2\hat{\eta}_1$, and C = 1, giving

B² - 4AC = 4
$$\hat{\eta}_1^2$$
 - 4[$\hat{\eta}_1^2$ - $\frac{c^2}{SXX}$] = $\frac{c^2}{SXX} > 0$,

so the confidence bands are a hyperbola.

[Note: The least squares regression line is *not* one of the axes of the hyperbola, since the confidence bands are "equidistant " from the line vertically, but not in the perpendicular direction.]