ESTIMATING CONDITIONAL MEANS

Model Assumptions: Linear mean, constant variance, independence, and normality.

Sampling Distribution of Estimate of Conditional Mean:

- $\hat{\mathrm{E}}(\mathrm{Y} \mid \mathrm{x})=\hat{\eta}_{0}+\hat{\eta}_{1} \mathrm{X}$-- estimate of $\mathrm{E}(\mathrm{Y} \mid \mathrm{x})$.
- $\hat{\eta}_{0}$ and $\hat{\eta}_{1}$ are linear combinations of the y_{i}^{\prime} 's $\Rightarrow \hat{\mathrm{E}}(\mathrm{Y} \mid \mathrm{X})$ linear combinations of the y_{i} ' s
$\Rightarrow \hat{\mathrm{E}}(\mathrm{Y} \mid \mathrm{x})$ has a normal distribution.
(Why doesn't this follow just from normality of $\hat{\eta}_{0}$ and $\hat{\eta}_{1}$?)
- $\mathrm{E}\left(\hat{\mathrm{E}}(\mathrm{Y} \mid \mathrm{x}) \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{E}\left(\hat{\eta}_{0}+\hat{\eta}_{1} \mathrm{X} \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$

$$
\begin{aligned}
& =\mathrm{E}\left(\hat{\eta}_{0} \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{E}\left(\hat{\eta}_{\mathrm{t}} \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \mathrm{x} \\
& =\eta_{0}+\eta_{1} \mathrm{x} \\
& =\mathrm{E}(\mathrm{Y} \mid \mathrm{x})
\end{aligned}
$$

Thus: $\hat{E}(Y \mid x)$ is an unbiased estimator of $E(Y \mid x)$.

- Calculations (left to the interested reader; consider covariances) will show:
$\operatorname{Var}\left(\hat{\mathrm{E}}(\mathrm{Y} \mid \mathrm{x}) \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\sigma^{2}\left(\frac{1}{n}+\frac{(x-\bar{x})^{2}}{S X X}\right)$
Comments:

1. What does this say when $x=0$?
2. The further x is from \bar{x}, the ___ the variance of the conditional mean estimate.
3. How does $\operatorname{Var}(\hat{\mathrm{E}}(\mathrm{Y} \mid \mathrm{x}))$ depend on n and the spread of the x_{i} 's?

Define the standard error of $\hat{E}(\mathrm{Y} \mid \mathrm{x})$:

$$
\text { s.e }(\hat{\mathrm{E}}(\mathrm{Y} \mid \mathrm{x}))=\hat{\sigma^{2}} \sqrt{\frac{1}{n}+\frac{(x-\bar{x})^{2}}{S X X}}
$$

As with $\hat{\eta}_{0}$ and $\hat{\eta}_{1}$, one can show that (with our model assumptions)

$$
\frac{\hat{E}(Y \mid x)-E(Y \mid x)}{\text { s.e. }(\hat{E}(Y \mid x))} \sim t(n-2),
$$

so we can use this as a test statistic to do inference on $\mathrm{E}(\mathrm{Y} \mid \mathrm{x})$.

Confidence Bands

Plot the least squares regression line.
For each point (x, y) on the line plot the points

$$
(x, y \pm \operatorname{s.e}(\hat{\mathrm{E}}(\mathrm{Y} \mid \mathrm{x})))
$$

This gives curves with equations

$$
\mathrm{y}=\hat{\eta}_{0}+\hat{\eta}_{1} \mathrm{X} \pm \hat{\sigma^{2}} \sqrt{\frac{1}{n}+\frac{(x-\bar{x})^{2}}{S X X}}
$$

More generally:
Consider confidence bands: Curves of the form

$$
\mathrm{y}=\hat{\eta}_{0}+\hat{\eta}_{1} \mathrm{X} \pm c \sqrt{\frac{1}{n}+\frac{(x-\bar{x})^{2}}{S X X}}
$$

for some constant c .
Example: If $\mathrm{c}=\mathrm{t} \hat{\sigma}$, where t is the $95^{\text {th }}$ percentile for the $\mathrm{t}(\mathrm{n}-2)$ distribution, then the confidence bands will show the 90% confidence intervals for $\hat{E}(Y \mid x)$ as x varies.
[Pictures]

Criterion for determining what type of curve a quadratic equation in x and y describes:

Given the quadratic equation

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

if the discriminant $\mathrm{B}^{2}-4 \mathrm{AC}$ is positive, then the graph of the equation is a hyperbola (or a pair of intersecting lines in the degenerate case).

Put $\mathrm{y}=\hat{\eta}_{0}+\hat{\eta}_{1} \mathrm{X} \pm{ }^{c} \sqrt{\frac{1}{n}+\frac{(x-\bar{x})^{2}}{S X X}}$ in this form:

1) $\quad\left(\mathrm{y}-\hat{\eta}_{0}-\hat{\eta}_{1} \mathrm{X}\right)^{2}=c^{2}\left(\frac{1}{n}+\frac{(x-\bar{x})^{2}}{S X X}\right)$.
2) $\mathrm{y}^{2}-2 \hat{\eta}_{1} \mathrm{xy}+\hat{\eta}_{1}^{2} \mathrm{x}^{2}-\frac{c^{2}}{S X X} x^{2}$
$+($ terms of degree 1 and 2$)=0$.
So $\quad \mathrm{A}=\hat{\eta}_{1}{ }^{2}-\frac{c^{2}}{S X X}$

$$
\mathrm{B}=-2 \hat{\eta}_{1}
$$

$$
\mathrm{C}=1
$$

$$
\mathrm{B}^{2}-4 \mathrm{AC}=4 \hat{\eta}_{1}^{2}-4\left[\hat{\eta}_{1}^{2}-\frac{c^{2}}{S X X}\right]
$$

$$
=\frac{c^{2}}{S X X}>0
$$

so the confidence bands are a hyperbola.

Note: The least squares regression line is not one of the axes of the hyperbola, since the confidence bands are "equidistant " from the line vertically, but not in the perpendicular direction.

