INDEPENDENCE, COVARIANCE AND CORRELATION

Independence:

Intuitive idea of " Y is independent of X ": The distribution of Y doesn't depend on the value of X .

In terms of the conditional pdf's:
" $f(y \mid x)$ doesn't depend on $x . "$
Caution: " Y is not independent of X " means simply that the distribution of Y may vary as X varies. It doesn't mean that Y is a function of X .

If Y is independent of X , then:

1. $\mu_{\mathrm{x}}=\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=\mathrm{x})$ does not depend on x .

Question: Is the converse true? That is, if $\mathrm{E}(\mathrm{YIX}=\mathrm{x})$ does not depend on x , can we conclude that Y is independent of X ?
2. (Still assuming Y is independent of X) Let $\mathrm{h}(\mathrm{y})$ be the common pdf of the conditional distributions YIX. Then for every x ,

$$
\mathrm{h}(\mathrm{y})=\mathrm{f}(\mathrm{y} \mid \mathrm{x})=\frac{f(x, y)}{f_{X}(x)},
$$

where $f(x, y)$ is the joint pdf of X and Y.
Therefore

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}, \mathrm{y}) & =\mathrm{h}(\mathrm{y}) \mathrm{f}_{\mathrm{X}}(\mathrm{x}) \\
\mathrm{f}_{\mathrm{Y}}(\mathrm{y}) & =\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x \\
& =\int_{-\infty}^{\infty} h(y) f_{X}(x) d x \\
& =\mathrm{h}(\mathrm{y}) \int_{-\infty}^{\infty} f_{X}(x) d x=\mathrm{h}(\mathrm{y})=\mathrm{f}(\mathrm{ylx})
\end{aligned}
$$

In other words: If Y is independent of X, then the conditional distributions of Y given X are the same as the marginal distribution of Y.
3. Now (still assuming Y is independent of X) we have

$$
\begin{aligned}
\mathrm{f}_{\mathrm{Y}}(\mathrm{y})=\mathrm{f}(\mathrm{y} \mid \mathrm{x}) & =\frac{f(x, y)}{f_{X}(x)}, \\
\mathrm{f}_{\mathrm{Y}}(\mathrm{y}) \mathrm{f}_{\mathrm{X}}(\mathrm{x}) & =\mathrm{f}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

SO

In other words: If Y is independent of X, then the joint distribution of X and Y is the product of the marginal distributions of X and Y.

Exercise: The converse of this last statement is true. That is: If the joint distribution of X and Y is the product of the marginal distributions of X and Y , then Y is independent of X .

Observe: The condition $\mathrm{f}_{\mathrm{Y}}(\mathrm{y}) \mathrm{f}_{\mathrm{X}}(\mathrm{x})=\mathrm{f}(\mathrm{x}, \mathrm{y})$ is symmetric in X and Y . Thus (3) and its converse imply that:

Y is independent of X if and only if
X is independent of Y .
So it makes sense to say "X and Y are independent."

Summary: The following conditions are all equivalent:

1. X and Y are independent.
2. $f_{X, Y}(x, y)=f_{Y}(y) f_{X}(x)$
3. The conditional distribution of $\mathrm{Yl}(\mathrm{X}=\mathrm{x})$ is independent of x.
4. The conditional distribution of $\mathrm{XI}(\mathrm{Y}=\mathrm{y})$ is independent of y.
5. $f(y \mid x)=f_{Y}(y)$ for all y.
6. $f(x \mid y)=f_{X}(x)$ for all x.

Additional property of independent random variables: If X and Y are independent, then $\mathrm{E}(\mathrm{XY})=$ $\mathrm{E}(\mathrm{X}) \mathrm{E}(\mathrm{Y})$. (Proof might be homework.)

Covariance: For random variables X and Y ,

$$
\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\mathrm{E}([\mathrm{X}-\mathrm{E}(\mathrm{X})][\mathrm{Y}-\mathrm{E}(\mathrm{Y})])
$$

Comments:

- Cov (capital C) \longleftrightarrow population
cov (or Cov-hat) \longleftrightarrow sample. Cov is a parameter \longleftrightarrow population cov is a statistic \longleftrightarrow calculated from the sample.
- Compare and contrast with definition of $\operatorname{Var}(\mathrm{X})$.
- If X and Y both tend to be on the same side of their respective means (i.e., both greater than or both less than their means), then $[\mathrm{X}-\mathrm{E}(\mathrm{X})][\mathrm{Y}-\mathrm{E}(\mathrm{Y})]$ tends to be positive, so $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})$ is positive. Similarly, if X and Y tend to be on opposite sides of their respective means, then $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})$ is negative. If there is no trend of either sort, then $\operatorname{Cov}(X, Y)$ should be zero. Thus covariance roughly measures the extent of a "positive" or "negative" trend in the joint distribution of X and Y .
- Units of $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})$?

1. $\operatorname{Cov}(\mathrm{X}, \mathrm{X})=$
2. $\operatorname{Cov}(\mathrm{Y}, \mathrm{X})=$
3. $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\mathrm{E}([\mathrm{X}-\mathrm{E}(\mathrm{X})][\mathrm{Y}-\mathrm{E}(\mathrm{Y})])=$

In words ...
(Compare with the alternate formula for $\operatorname{Var}(\mathrm{X})$.)
4. Consequence: If X and Y are independent, then:
$\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=$
Note: Converse false. (Future homework.)
5. $\operatorname{Cov}(\mathrm{cX}, \mathrm{Y})=$

$\operatorname{Cov}(\mathrm{X}, \mathrm{cY})=$

6. $\operatorname{Cov}(a+X, Y)=$

$$
\operatorname{Cov}(\mathrm{X}, \mathrm{a}+\mathrm{Y})=
$$

7. $\operatorname{Cov}(\mathrm{X}+\mathrm{Y}, \mathrm{Z}))=$

$$
\operatorname{Cov}(\mathrm{X}, \mathrm{Y}+\mathrm{Z})=
$$

8. $\operatorname{Var}(\mathrm{X}+\mathrm{Y})=$

Consequence: If X and Y are independent, then

$$
\operatorname{Var}(\mathrm{X}+\mathrm{Y})=
$$

(converse false!)
When else might this be true?

Bounds on Covariance

$\sigma_{\mathrm{X}}=$ population standard deviation $\sqrt{\operatorname{Var}(X)}$ of X .
(Do not confuse with sample standard deviation $=\mathrm{s}$ or s.d. or $\hat{\sigma})$
σ_{Y} defined similarly.
Consider the new random variable $\frac{X}{\sigma_{X}}+\frac{Y}{\sigma_{Y}}$.
Since Variance is always ≥ 0,
(*) $0 \leq \operatorname{Var}\left(\frac{X}{\sigma_{X}}+\frac{Y}{\sigma_{Y}}\right)$
$=\operatorname{Var}\left(\frac{X}{\sigma_{X}}\right)+\operatorname{Var}\left(\frac{Y}{\sigma_{Y}}\right)+2 \operatorname{Cov}\left(\frac{X}{\sigma_{X}}, \frac{Y}{\sigma_{Y}}\right)$
$=\frac{1}{\sigma_{x}^{2}} \operatorname{Var}(\mathrm{X})+\frac{1}{\sigma_{Y}^{2}} \operatorname{Var}(\mathrm{Y})+\frac{2}{\sigma_{X} \sigma_{Y}} \operatorname{Cov}(\mathrm{X}, \mathrm{Y})$
$=$
$=2\left[1+\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}\right]$.
Therefore:
$(* *) \quad \frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}} \geq-1$
Equivalently: $\operatorname{Cov}(\mathrm{X}, \mathrm{Y}) \geq-\sigma_{X} \sigma_{Y}$.
Looking at $\operatorname{Var}\left(\frac{X}{\sigma_{X}}-\frac{Y}{\sigma_{Y}}\right)$ similarly shows:
$(* * *) \quad \frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}} \leq 1$
Equivalently: $\operatorname{Cov}(\mathrm{X}, \mathrm{Y}) \leq \sigma_{X} \sigma_{Y}$.
(details left to the student)
Combining (${ }^{* *}$) and (${ }^{* * *)}$:

$$
\left|\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}\right| \leq 1
$$

Equivalently: $|\operatorname{Cov}(\mathrm{X}, \mathrm{Y})| \leq \sigma_{X} \sigma_{Y}$

Equality in $\left({ }^{* *}\right) \Leftrightarrow$ equality in $\left({ }^{*}\right)$-- i.e,

$$
\begin{aligned}
& \operatorname{Var}\left(\frac{X}{\sigma_{X}}+\frac{Y}{\sigma_{Y}}\right)=0 \\
& \frac{X}{\sigma_{X}}+\frac{Y}{\sigma_{Y}} \text { is constant -- }
\end{aligned}
$$

say,

$$
\frac{X}{\sigma_{X}}+\frac{Y}{\sigma_{Y}}=\mathrm{c} .
$$

(Note that c must be the mean of $\frac{X}{\sigma_{X}}+\frac{Y}{\sigma_{Y}}$,

$$
\text { which is } \left.\frac{\mu_{X}}{\sigma_{X}}+\frac{\mu_{Y}}{\sigma_{Y}}\right)
$$

This in turn is equivalent to

$$
Y=\sigma_{Y}\left(-\frac{X}{\sigma_{X}}+c\right)
$$

or

$$
Y=-\frac{\sigma_{Y}}{\sigma_{X}} X+\sigma_{Y} c
$$

This says: The pairs (X, Y) lie on a line with negative slope (namely, $-\sigma_{\mathrm{Y}} / \sigma_{\mathrm{X}}$)
(Converse is also true -- details left to the student.)

Note: the line has slope $-\frac{\sigma_{Y}}{\sigma_{X}}$ and

$$
\text { y-intercept } \frac{\sigma_{Y}}{\sigma_{X}} \mu_{X}+\mu_{Y}
$$

Similarly, $\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=+1$ exactly when the pairs (X, Y) lie on a line with positive slope.

Correlation: The (population) correlation coefficient of the random variables X and Y is

$$
\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}} .
$$

Note:

- ρ for short.
- ρ is a parameter (refers to the population).
- Do not confuse with the sample correlation coefficient (usually called r): a statistic (calculated from the sample).

Properties of ρ :

- Negative ρ indicates a tendency for the variables X and Y to co-vary negatively.
- Positive ρ indicates a tendency for the variables X and Y to co-vary positively.
- $-1 \leq \rho \leq 1$
- $\rho=-1 \Leftrightarrow$ all pairs (X, Y) lie on a straight line with negative slope.
- $\rho=1 \Leftrightarrow$ all pairs (X,Y) lie on a straight line with positive slope.
- Units of ρ ?
- ρ is the Covariance of the standardized random variables $\frac{X-\mu_{X}}{\sigma_{X}}$ and $\frac{Y-\mu_{Y}}{\sigma_{Y}}$. (Details left to student.)
- $\rho=0 \Leftrightarrow \operatorname{Cov}(X, Y)=0$.

Uncorrelated variables:

X and Y are uncorrelated means $\rho_{\mathrm{X}, \mathrm{Y}}=0$ (or equivalently, $\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=0)$.

Examples:

1. X and Y are independent \Rightarrow uncorrelated. (Why?)
2. X uniform on the interval $[-1,1]$.
$\mathrm{Y}=\mathrm{X}^{2}$.
X and Y are uncorrelated (details homework)
X and Y not independent. ($\mathrm{E}(\mathrm{Y} \mid \mathrm{X})$ not constant)
ρ is a measure of the degree of a "overall" nonconstant linear relationship between X and Y . Example 2 shows: Two variables can have a strong nonlinear relationship and still be uncorrelated.

Sample variance, covariance, and correlation

$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$ sample of data from the joint distribution of X and Y

Sample covariance:

$$
\begin{aligned}
& \operatorname{cov}(\mathrm{x}, \mathrm{y})(\text { or } \\
& \quad=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
\end{aligned}
$$

Sample correlation coefficient

$$
\mathrm{r}(\text { or } \hat{\rho})=\frac{\operatorname{cov}(x, y)}{s d(x) s d(y)}
$$

- Estimates of the corresponding population parameters.
- Analogous properties.

