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INFERENCE FOR MULTIPLE LINEAR REGRESSION  
 
Recall Terminology: 

p predictors x1, x2, … , xp 
 (Some might be indicator variables for categorical variables.) 
k-1 non-constant terms u1, u2, … , uk-1  

Each uj is a function of x1, x2, … , xp: uj = uj(x1, x2, … , xp) 
For convenience, we often set u0 = 1 (constant function/term) 
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Assumptions so far: 
 1. E(Y|x) (or E(Y|u)) = η0 + η1u1 + … + ηk-1uk-1 = ηTu (Linear Mean Function) 
 2. Var(Y|x) (or  Var(Y|u)) = σ2    (Constant Variance) 
 
Additional Terminology: Similar to terminology for simple linear regression 

• 

! 

ˆ y i  = 

! 

ˆ " Tui ( ith fitted value or ith fit) 
• 

! 

ˆ e 
i
= yi -

! 

ˆ y i   (ith residual) 
• RSS = RSS(

! 

ˆ " ) = ∑( yi -

! 

ˆ y i)
2 = ∑ 

! 

ˆ e 
i

2 (residual sum of squares) 
 
Results from Assumptions (1) and (2) similar to those in simple linear regression: 
 

• 

! 

ˆ " j  is an unbiased estimator of 

! 

" j . 

• 

! 

ˆ " 
2 = 

! 

1

n " k
RSS  is an unbiased estimator of σ2. 

 Note: In simple regression, k = 2. 
 
Example: Haystacks 
 
Additional Assumptions Needed for Inference: 
 (3) Y|x is normally distributed 
  (Recall that this will be the case if X,Y are multivariate normal.)  
 (4) The yi's are independent observations from the Y|xi's. 
Consequences of Assumptions (1) - (4) for Inference for Coefficients: 

• Y|x ~ N(ηTu, σ2) 
• 

! 

ˆ " 
2 is a multiple of a χ2 random variable with n-k degrees of freedom  -- so we 

say  

! 

ˆ " 
2 and RSS have df = n-k. 

• There is a formula for s.e.( 

! 

ˆ " j). (We'll use software to calculate it.) 
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• 

! 

ˆ " j #" j

s.e.( ˆ " j)
 ~ t(n-k) for each j. 

 
Note:  

• The consequences listed above are also valid replacing (3) by the weaker 
assumption that Y|xi is normally distributed for i = 1, 2, … , p. 

• If the Y|xi’s are not normal, but are not too ill-behaved and n is large enough, the 
consequences above are still approximately true, thanks to the CLT. 

 
Example: Haystacks 
 
Caution: Multiple Testing 
Recall: If you set an α level for hypothesis tests, then a p-value less than α tells you that 
(at least) one of the following holds: 
 i) The model does not fit 
 ii) The null hypothesis is false. 
 iii) The sample at hand is one of the less than α percent of samples for which you 
would falsely reject the null hypothesis. 
 
If you are doing two hypothesis tests with the same data, there is no guarantee that the 
“bad” samples (for which you falsely reject the null) are the same for both tests. In 
general, the probability of falsely rejecting one of the two null hypotheses is greater than 
α.  
 In this situation, you typically need an overall significance level α. That is, you 
want to be able to say that, if the model fits and both null hypotheses are true, then the 
probability of falsely rejecting at least one of the two null hypotheses using your decision 
rule is α. To do this, you typically need lower significance levels for each test 
individually.  
 One way to be sure of having an overall significance level α when doing k 
hypothesis tests with the same data is the Bonferroni method:  Require significance level 
α/k for each test individually. (There are various other methods that allow individual 
significance levels higher than α/k, but they only apply in specific situations.)  
 
For this reason, in model-building in regression, p-values for hypothesis tests are often 
interpreted as just loose guides for what might or might not be reasonable. 
 
A similar situation holds for confidence intervals: To be able to say, “We have produced 
these two intervals by a procedure which, for 95% of all suitable samples, produces a first 
interval containing η0 and a second interval containing η1” (i.e., if you want an overall 
confidence level 95%), the two individual confidence intervals need to have individual 
confidence level greater than 95%.  Bonferroni will also work here: requiring individual 
confidence levels 97.5% will suffice to give overall confidence level 95% for two 
confidence intervals. In regression, we can also use confidence regions; see Section 10.8 
for more details. 
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Inference for Means: 
 
In simple regression, we saw  
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 s.e (

! 

ˆ E (Y|x) =  

! 

ˆ " 
1

n
+

x # x ( )
2

SXX
  

= 

! 

ˆ "  times a function of x and the xi's (but not the yi's) 
An analogous computation (best done by matrices -- see Section 7.9) in the multiple 
regression model gives  
 Var (

! 

ˆ E (Y|x)) = Var(

! 

ˆ E (Y|x)| x1, … , xn) = hσ2, 
 
where h = h(u) ( = h(x) by abuse of notation) is a function of u1, u2, … , un, called the 
leverage. (The name will be explained later.) 
 
In simple regression,  

  h(x) = 

! 

1

n
+

x " x ( )
2

SXX
 

Note that 

! 

x " x ( )
2  (hence h(x) ) is a (non-linear) measure of the distance from x to 

! 

x . 
Similarly, in multiple regression, h(x) is a type of measure of the distance from u to the 
centroid 
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(that is, it is a monotone function of 

! 

uj " u j( )#
2

.)  In particular: 
 

The further u is from 

! 

u , the larger Var (

! 

ˆ E (Y|x)) is, so the less precisely we can 
estimate E(Y|x) or y. (Thus an x-outlier could give a large h, and hence make 
inference less precise.) 

 
Example: 1 predictor 
 
Define: 
  s.e. (

! 

ˆ E (Y|x)) = 

! 

ˆ " 

! 

h(u)  
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Summarizing: 
• The larger the leverage, the larger s.e. (

! 

ˆ E (Y|x)) is, so the less precisely we can 
estimate E(Y|x). 

• The leverage depends  just on the xi's, not on the yi's. 
 
Similarly to simple regression: 

• The sampling distribution of 

! 

ˆ E (Y|x) is normal 

• 

! 

ˆ E (Y | x) - E(Y | x)

s.e.( ˆ E (Y | x)
 ~ t(n-k).  

Thus we can do hypothesis tests and find confidence intervals for the conditional 
mean response E(Y|x) 
 

Again,  
• The consequences listed above are also valid replacing (3) by the weaker 

assumption that Y|xi is normally distributed for i = 1, 2, … , p. 
• If the Y|xi’s are not normal, but are not too ill-behaved and n is large enough, the 

consequences above are still approximately true, thanks to the CLT. 
 

 
Prediction: Results are similar to simple regression: 
 
• Prediction error = Y|x - 

! 

ˆ E (Y|x) 
• Var(Y|x - 

! 

ˆ E (Y|x)) = σ2(1 +h(u)) = σ2 + Var(E(Y|x)) 
• Define s.e. (Ypred|x) = 

! 

ˆ " 1+ h  

• 

! 

Y | x " ˆ E (Y | x)

se(y pred | x)
 ~ t(n-k), so we can form prediction intervals. 

 
Caution: As with simple regression, for prediction, we need the assumption that E(Y|x) is 
normal (or very close to normal, with approximate results). 
 
Example: Haystacks 
 
 

 
 
   
 
 


