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INFERENCE FOR MULTIPLE LINEAR 

REGRESSION 

 

Recall Terminology: 

 

p predictors x1, x2, … , xp 

 

 (Some might be indicator variables for   

  categorical variables.) 

 

k-1 non-constant terms u1, u2, … , uk-1  

 

Each uj is a function of x1, x2, … , xp:  

 

  uj = uj(x1, x2, … , xp) 

 

For convenience, we often set u0 = 1  

  

  (constant function/term) 
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Assumptions so far: 

 

 1. E(Y|x) (or E(Y|u)) = !0 + !1u1 + … + !k-1uk-1  

 

      = !Tu  

 

   (Linear Mean Function) 

 

 2. Var(Y|x) (or  Var(Y|u)) = "2     

 

   (Constant Variance) 

 

Additional Terminology:  

 

  (Similar to simple linear regression) 

 

• 

! 

ˆ y i  = 

! 

ˆ " Tui   ( ith fitted value or ith fit) 

 

• 

! 

ˆ e 
i = yi -

! 

ˆ y i    (ith residual) 

 

• RSS = RSS(

! 

ˆ " ) = #( yi -

! 

ˆ y i)
2 = # (

! 

ˆ e 
i )2  

 

(residual sum of squares) 
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Results from Assumptions (1) and (2):  

 

 (Similar to simple linear regression) 

 

• 

! 

ˆ " j  is an unbiased estimator of 

! 

" j . 

 

• 

! 

ˆ " 
2

 = 

! 

1

n " k
RSS  is an unbiased estimator of "2. 

 

 Note: In simple regression, k = 2. 

 

Example: Haystacks 

 

 

Additional Assumptions Needed for Inference: 

 

 (3) Y|x is normally distributed 

(Recall that this will be the case if X,Y are 

multivariate normal.) 

 

(4) The yi's are independent observations from 

the Y|xi's. 
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Consequences of Assumptions (1) - (4)  

 for  Inference for Coefficients: 

 

• Y|x ~ N(!Tu, "2) 

 

• 

! 

ˆ " 
2

 is a multiple of a $2 random variable with 

 

  n-k degrees of freedom  -- so we say  

 

! 

ˆ " 
2

 and RSS have df = n-k. 

 

• There is a formula for s.e.( 

! 

ˆ " j).  

 

 (We'll use software to calculate it.) 

 

• 

! 

ˆ " j #" j

s.e.( ˆ " j)
 ~ t(n-k) for each j. 
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Note:  

 

• The consequences listed above are also valid  

 replacing (3) by the weaker assumption that Y|xi  

 is normally distributed for i = 1, 2, … , p. 

 

• If the Y|xi’s are not normal, but are not too ill-

behaved and n is large enough, the consequences 

above are still approximately true, thanks to the 

CLT. 

 

• Example: Haystacks  
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Caution: Multiple Testing 

 

Recall: If you set an % level for hypothesis tests, then 

a p-value less than % tells you that (at least) one of 

the following holds: 

 

 i) The model does not fit 

 

 ii) The null hypothesis is false. 

 

 iii) The sample at hand is one of the less than % 

percent of samples for which you would falsely reject 

the null hypothesis. 
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If you are doing two hypothesis tests with the same 

data: 

 

• There is no guarantee that the “bad” samples 

(for which you falsely reject the null) are the 

same for both tests.  

 

• In general, the probability of falsely rejecting 

one of the two null hypotheses is greater than %.  
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When doing two hypothesis tests with the same data, 

you typically need an overall significance level %:  

 

• That is, you want to be able to say that, if the 

model fits and both null hypotheses are true, then 

the probability of falsely rejecting at least one of 

the two null hypotheses using your decision rule 

is %.  

 

• To do this, you typically need lower significance 

levels for each test individually.  

 

• One way to be sure of having an overall 

significance level % when doing k hypothesis 

tests with the same data is the Bonferroni 

method: Require significance level %/k for each 

test individually.  

 

• There are various other methods that allow 

individual significance levels higher than %/k, 

but they only apply in specific situations.)  

 

 

For this reason, in model-building in regression, p-

values for hypothesis tests are often interpreted as 

just loose guides for what might or might not be 

reasonable. 
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A similar situation holds for confidence intervals:  

 

• To be able to say, “We have produced these two 

intervals by a procedure which, for 95% of all 

suitable samples, produces a first interval 

containing !0 and a second interval containing 

!1” (i.e., if you want an overall confidence level 

95%), the two individual confidence intervals 

need to have individual confidence level greater 

than 95%.   

 

• Bonferroni will also work here: requiring 

individual confidence levels 97.5% will suffice 

to give overall confidence level 95% for two 

confidence intervals.  

 

• In regression, we can also use confidence 

regions; see Section 10.8 for more details. 
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Inference for Means: Recall from simple regression:  

 

 Var (

! 

ˆ E (Y|x)) = Var(

! 

ˆ E (Y|x)| x1, … , xn)  

 

= 

! 

" 2 1

n
+

x # x ( )
2

SXX

$ 

% 

& 
& 

' 

( 

) 
) . 

So 

 s.e (

! 

ˆ E (Y|x) = 

! 

ˆ " 
1

n
+

x # x ( )
2

SXX
  

 

= 

! 

ˆ "  x (a function of x and the xi's  

but not the yi's) 

 

An analogous computation (best done by matrices -- 

see Section 7.9) in the multiple regression model 

gives  

 

 Var (

! 

ˆ E (Y|x)) = Var(

! 

ˆ E (Y|x)| x1, … , xn)  

 

= h"2, 

 

where h = h(u) ( = h(x) by abuse of notation) is a 

function of u1, u2, … , un, called the leverage.  
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In simple regression,  

 

  h(x) = 

! 

1

n
+

x " x ( )
2

SXX
 

 

Note that 

! 

x " x ( )
2

 (hence also h(x)) is a (non-linear) 

measure of the distance from x to 

! 

x . Similarly, in 

multiple regression, h(x) is a type of measure of the 

distance from u to the centroid 

 

  

! 

u  =  

! 

1

u 
1
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(i.e., it is a monotone function of 

! 

uj " u j( )#
2

.)  In 

particular: 

 

• The further u is from 

! 

u , the larger Var (

! 

ˆ E (Y|x)) is, 

so the less precisely we can estimate E(Y|x) or y. 

• For example, an x-outlier could give a large h, and 

hence make inference less precise. 

 

Example: 1 predictor 
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Define: 

  s.e. (

! 

ˆ E (Y|x)) = 

! 

ˆ " 

! 

h(u)  

 

Summarize: 

 

• The larger the leverage, the larger s.e. (

! 

ˆ E (Y|x)) is, 

so the less precisely we can estimate E(Y|x). 

 

• The leverage depends just on the xi's, not on the 

yi's. 

 

Similarly to simple regression: 

 

• The sampling distribution of 

! 

ˆ E (Y|x) is normal 

 

• 

! 

ˆ E (Y | x) - E(Y | x)

s.e.( ˆ E (Y | x)  ~ t(n-k).  

 

• Thus we can do hypothesis tests and find 

confidence intervals for the conditional mean 

response E(Y|x) 

 

 

 

 

 

 



 13 

Again,  

 

• The consequences listed above are also valid 

replacing (3) by the weaker assumption that Y|xi 

is normally distributed for i = 1, 2, … , p. 

 

• If the Y|xi’s are not normal, but are not too ill-

behaved and n is large enough, the consequences 

above are still approximately true, thanks to the 

CLT. 
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Prediction: Results are similar to simple regression: 

 

• Prediction error = Y|x - 

! 

ˆ E (Y|x) 

 

• Var(Y|x - 

! 

ˆ E (Y|x)) = "2(1 +h(u)) 

 

• Define s.e. (Ypred|x) = 

! 

ˆ " 1+ h  

 

• 

! 

Y | x " ˆ E (Y | x)

se(y pred | x)  ~ t(n-k), so we can form 

prediction intervals. 

 

Caution: As with simple regression, for prediction, 

we need the assumption that E(Y|x) is normal (or 

very close to normal, with approximate results). 

 

Example: Haystacks 

 

 

 

 

 

   

 
 

 


