2

INFERENCE FOR MULTIPLE LINEAR REGRESSION

1

Recall Terminology:

p predictors x_1, x_2, \dots, x_p

(Some might be indicator variables for categorical variables.)

k-1 non-constant terms u_1, u_2, \dots, u_{k-1}

Each u_i is a function of x_1, x_2, \dots, x_p :

$$u_i = u_i(x_1, x_2, ..., x_p)$$

For convenience, we often set $u_0 = 1$

(constant function/term)

$$\underline{\mathbf{u}} = \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ \vdots \\ u_{k-1} \end{bmatrix} = \begin{bmatrix} 1 \\ u_1 \\ \vdots \\ \vdots \\ u_{k-1} \end{bmatrix}$$

Assumptions so far:

1.
$$E(Y|\underline{x})$$
 (or $E(Y|\underline{u})$) = $\eta_0 + \eta_1 u_1 + ... + \eta_{k-1} u_{k-1}$
= $\underline{\eta}^T \underline{u}$

(Linear Mean Function)

2. $Var(Y|\underline{x})$ (or $Var(Y|\underline{u})$) = σ^2

(Constant Variance)

Additional Terminology:

(Similar to simple linear regression)

- $\hat{y}_i = \hat{y}^T \underline{\mathbf{u}}_i$ (i^{th} fitted value or i^{th} fit)
- $\hat{e}_i = y_i \hat{y}_i$ (i^{th} residual)
- RSS = RSS($\hat{\underline{\eta}}$) = $\sum (y_i \hat{y}_i)^2 = \sum (\hat{e}_i)^2$

(residual sum of squares)

3

Results from Assumptions (1) and (2):

(Similar to simple linear regression)

• $\hat{\eta}_j$ is an unbiased estimator of η_j .

• $\hat{\sigma}^2 = \frac{1}{n-k} RSS$ is an unbiased estimator of σ^2 .

Note: In simple regression, k = 2.

Example: Haystacks

Additional Assumptions Needed for Inference:

- (3) Y| \underline{x} is normally distributed (Recall that this will be the case if \underline{X} ,Y are multivariate normal.)
- (4) The y_i 's are independent observations from the $Y|\underline{x}_i$'s.

Consequences of Assumptions (1) - (4) for Inference for Coefficients:

- $Y|\underline{x} \sim N(\underline{\eta}^T\underline{u}, \sigma^2)$
- $\hat{\sigma}^2$ is a multiple of a χ^2 random variable with n-k degrees of freedom -- so we say $\hat{\sigma}^2$ and RSS have df = n-k.

4

- There is a formula for s.e.($\hat{\eta}_j$).

 (We'll use software to calculate it.)
- $\frac{\hat{\eta}_j \eta_j}{s.e.(\hat{\eta}_i)} \sim t(n-k)$ for each j.

6

Note:

• The consequences listed above are also valid replacing (3) by the weaker assumption that $Y|\underline{x}_i$ is normally distributed for i = 1, 2, ..., p.

5

• If the $Y|\underline{x_i}$'s are not normal, but are not too illbehaved and n is large enough, the consequences above are still approximately true, thanks to the CLT.

• Example: Haystacks

Caution: Multiple Testing

Recall: If you set an α level for hypothesis tests, then a p-value less than α tells you that (at least) one of the following holds:

- i) The model does not fit
- ii) The null hypothesis is false.
- iii) The sample at hand is one of the less than α percent of samples for which you would falsely reject the null hypothesis.

If you are doing **two** hypothesis tests with the same data:

- There is **no** guarantee that the "bad" samples (for which you falsely reject the null) are the same for both tests.
- In general, the probability of falsely rejecting one of the two null hypotheses is **greater** than α .

When doing two hypothesis tests with the same data, you typically need an *overall* significance level α :

- That is, you want to be able to say that, if the model fits and *both* null hypotheses are true, then the probability of falsely rejecting *at least* one of the two null hypotheses using your decision rule is α.
- To do this, you typically need *lower* significance levels for each test individually.
- One way to be sure of having an overall significance level α when doing k hypothesis tests with the same data is the *Bonferroni* method: Require significance level α/k for each test individually.
- There are various other methods that allow individual significance levels higher than α/k, but they only apply in specific situations.)

For this reason, in model-building in regression, p-values for hypothesis tests are often interpreted as just loose guides for what might or might not be reasonable.

A similar situation holds for confidence intervals:

- To be able to say, "We have produced these two intervals by a procedure which, for 95% of all suitable samples, produces a first interval containing η₀ and a second interval containing η₁" (i.e., if you want an *overall* confidence level 95%), the two individual confidence intervals need to have *individual* confidence level *greater* than 95%.
- Bonferroni will also work here: requiring individual confidence levels 97.5% will suffice to give overall confidence level 95% for two confidence intervals.
- In regression, we can also use *confidence regions*; see Section 10.8 for more details.

Inference for Means: Recall from simple regression:

Var
$$(\hat{E}(Y|x)) = Var(\hat{E}(Y|x)|x_1, ..., x_n)$$

= $\sigma^2 \left(\frac{1}{n} + \frac{(x-\overline{x})^2}{SXX}\right)$.

So

s.e
$$(\hat{E}(Y|x) = \hat{O}\sqrt{\frac{1}{n} + \frac{(x - \overline{x})^2}{SXX}}$$

= $\hat{\sigma}$ X (a function of x and the x_i's but not the y_i's)

An analogous computation (best done by matrices -see Section 7.9) in the multiple regression model gives

$$Var (\hat{E}(Y|\underline{x})) = Var(\hat{E}(Y|\underline{x})| \underline{x}_1, \dots, \underline{x}_n)$$
$$= h\sigma^2,$$

where $h = h(\underline{u})$ (= $h(\underline{x})$ by abuse of notation) is a function of $\underline{u}_1, \underline{u}_2, \dots, \underline{u}_n$, called the *leverage*.

In simple regression,

$$h(x) = \frac{1}{n} + \frac{\left(x - \overline{x}\right)^2}{SXX}$$

Note that $(x - \overline{x})^2$ (hence also h(x)) is a (non-linear) measure of the distance from x to \overline{x} . Similarly, in multiple regression, $h(\underline{x})$ is a type of measure of the distance from \underline{u} to the *centroid*

$$\overline{\underline{u}} = egin{bmatrix} 1 \ \overline{u}_1 \ dots \ dots \ \overline{u}_{k-1} \end{bmatrix},$$

(i.e., it is a monotone function of $\sum (u_j - \overline{u}_j)^2$.) In particular:

- The further \underline{u} is from $\overline{\underline{u}}$, the larger $Var(\hat{E}(Y|x))$ is, so the less precisely we can estimate E(Y|x) or y.
- For example, an x-outlier could give a large h, and hence make inference less precise.

Example: 1 predictor

Define:

s.e.
$$(\hat{E}(Y|\underline{x})) = \hat{\sigma} \sqrt{h(u)}$$

Summarize:

- The larger the leverage, the larger s.e. $(\hat{E}(Y|x))$ is, so the less precisely we can estimate E(Y|x).
- The leverage depends just on the $\underline{x}_{\underline{i}}$'s, not on the y_i 's.

Similarly to simple regression:

• The sampling distribution of $\hat{E}(Y|\underline{x})$ is normal

•
$$\frac{\hat{E}(Y \mid \underline{x}) - E(Y \mid \underline{x})}{\text{s.e.}(\hat{E}(Y \mid \underline{x}))} \sim t(n-k).$$

• Thus we can do hypothesis tests and find confidence intervals for the conditional mean response E(Yl<u>x</u>)

Again,

- The consequences listed above are also valid replacing (3) by the weaker assumption that $Y|\underline{x}_i$ is normally distributed for i = 1, 2, ..., p.
- If the $Y|\underline{x_i}$'s are not normal, but are not too illbehaved and n is large enough, the consequences above are still approximately true, thanks to the CLT.

Prediction: Results are similar to simple regression:

- Prediction error = $Y|\underline{x} \hat{E}(Y|\underline{x})$
- $Var(Y|\underline{x} \hat{E}(Y|\underline{x})) = \sigma^2(1 + h(\underline{u}))$
- Define s.e. $(Y_{pred}|\underline{x}) = \hat{\sigma}\sqrt{1+h}$
- $\frac{Y \mid \underline{x} \hat{E}(Y \mid \underline{x})}{se(y_{pred} \mid \underline{x})} \sim t(n-k)$, so we can form prediction intervals.

Caution: As with simple regression, for prediction, we need the assumption that $E(Y|\underline{x})$ is normal (or very close to normal, with approximate results).

Example: Haystacks