MORE ON LEVERAGE AND VARIANCES OF RESIDUALS

1

Recall: In simple linear relation, to establish that

 $Var(y - \hat{y}|x) = \sigma^2(1 + leverage)$

for a new observation y (chosen independently of the y_i 's), we reasoned that since y and \hat{y} are independent,

$$Var(y - \hat{y}|x) = \sigma^{2} + Var(\hat{y}|x)$$
$$= \sigma^{2} + Var(\hat{E}(Y|x))$$

Similar reasoning is used to establish the result for multiple regression.

But we *cannot* apply this to find $Var(y_i - \hat{y}|x)$. *Why not*?

Instead, we need to take covariances into account.

The result (generalized to multiple regression):

$$\operatorname{Var}(\hat{e}_i | \underline{\mathbf{x}}) = \sigma^2 (1 - h(\underline{\mathbf{u}}_i))$$

Notation:

$$h_{i} = h_{ii}$$

$$= h(\underline{u}_{i})$$

$$(= h(\underline{x}_{i}) \text{ by abuse of notation})$$

$$= the \ i^{th} \ leverage.$$

So:

$$\operatorname{Var}(\hat{e}_i) = \sigma^2(1 - h_i)$$

Consequence:

Since $\operatorname{Var}(\hat{e}_i) \ge 0$,

 $h_i \leq 1.$

Note:

i) h could be > 1 for other values of \underline{x} . ii) h ≥ 0 since Var ($\hat{E}(Y|\underline{x})$) = h σ^2 Practical consequence:

If h_i is close to 1, then $Var(\hat{e}_i)$ is small.

Recalling that $E(\hat{e}_i) = 0$, this implies that \hat{e}_i is small -- so the least squares fit is close to (\underline{u}_i, y_i) .

In other words:

If h_i is close to 1, then \underline{x}_i is influential.

Thus: *Check leverages to identify possible influential observations.*