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MORE ON MULTIVARIATE DISTRIBUTIONS  
 
In the handout “Independence of More Than Two Random Variables,” we noted that with 
more than two random variables that covary (for example, the Big Mac data), we have 
various types of conditional distributions. Similarly, we have various types of marginal  
distributions: 

• Marginal (univariate) distributions of single variables. 
• Marginal (bivariate) distributions of two variables at a time. 
• Etc. 

 
For example, in the Big Mac data, if we consider response Big Mac and explanatory 
variables, Bread, TeachSal, TeachTax, and BusFare, we have 30 marginal distributions: 

• Marginal (univariate) distributions of each variable separately [5 total] 
• Marginal (bivariate) distributions of pairs of variables [5x4/2 = 10 total] 
• Marginal (joint) distributions of 3 variables at a time [(5x4x3)/(3x2) = 10 

total] 
• Marginal (joint) distributions of 4 variables at a time [5 total] 

But we can only easily plot and see 1 and 2 variable marginal plots. 
Most statistical software allows us to see all of these at one time with a scatterplot 
matrix. 
In arc, use the command on the Graph and Fit menu.  
 
Example: Big Mac 
 
Note: 

• The order in which variables are entered determines the order in which they 
appear in the scatterplot matrix. 

• The variable on the vertical axis is the row label; the variable on the horizontal 
axis is the column label. 

• Shift-Control-Click (or some variation depending on platform) blows up an 
individual plot. 

 
Plots of the response vs a single explanatory variable are called marginal response plots. 
 
Example: The scatterplot matrix for the Big Mac data shows that some of the marginal 
response plots do not appear to show a linear mean function. 
 
Question: Does this imply that the mean function  for Big Mac conditioned on all four 
explanatory variables is not linear? 
 
Special Case: Multivariate normal distribution. The pdf is of the form 
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 is the vector of means of the Xi's, and ∑ is an m x m 

matrix called the covariance matrix. (The superscript T denotes the matrix transpose.) 
This generalizes the bivariate normal distribution, with pdf 
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as can be seen by taking ∑ = 
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and X2; in the general case, the i,jth entry of the covariance matrix will be the covariance 
of Xi and Xj.) 
 
Properties of multivariate normal distributions: 
 
Recall that if X1 and X2 are bivariate normal, then each Xi is normal, and  
E(X1| X2) = a + bX2. These properties generalize: 
 
If X1, X2, … , Xm are (jointly) multivariate normal, then: 
 1. Any subset of these variables is also (multivariate) normal. 
 2. Each conditional mean obtained by conditioning one variable on a subset of the 
 other variables is a linear function of the remaining variables -- e.g.,  
  E(X1 | X2, … , Xm) = α0 + α2X2+ … +αm Xm. 
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Consequences for Regression: 
 
1. If X1, X2, … , Xp, Y are multivariate normal, then each subset of X1, X2, … , Xp, Y is 
also (multivariate) normal. 
2. For each subset of X1, X2, … , Xp, the conditional mean of Y conditioned on those 
variables is a linear function of those variables. In particular 

• E(Y| X1, X2, … , Xp) is a linear function of X1, X2, … , Xp (i.e., a linear model 
fits) 

• Even if we drop some predictors, a linear model fits. 
• For a single j, E(Y|xj) = a + bxj. 

This gives a way of checking if X1, X2, … , Xp, Y are not normal: If even one marginal 
response plot clearly indicates that the corresponding mean function is not linear, then X1, 
X2, … , Xp, Y are not multivariate normal. 
 
Caution: The converse is not true -- the marginal response plots might all be linear, 
without having the variables be multivariate normal. 
 
Examples:  
 1. n = 2: Y = X, X uniform on [0,1] 
 
 2. n = 3: Z = Y = X uniform on [0,1] 
 
Nonetheless, it is often useful to have marginals “linear” (i.e., with linear mean) and 
response Y normal. 

• It’s a little more reassuring that we might be able to drop predictors and still have 
a linear model. 

• Also, inference will assume conditionals of Y are normal. 
 
Thus, transforming variables more to this state can be helpful. Arc facilitates this by 
putting transformation slidebars on the scatterplot matrix.  


