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MORE ON MULTIVARIATE  DISTRIBUTIONS  

 

Recall from handout “Independence of More Than 

Two Random Variables”:  

 

 With more than two random variables that 

covary (e.g., the Big Mac data), we have various 

types of conditional distributions.  

 

Similarly, we have various types of marginal  

distributions: 

 

• Marginal (univariate) distributions of single 

variables. 

 

• Marginal (bivariate) distributions of two 

variables at a time. 

 

• Etc. 
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Example:  Big Mac data, with response Big Mac and 

explanatory variables Bread, TeachSal, TeachTax, 

and BusFare. There are 30 marginal distributions: 

 

• Marginal (univariate) distributions of each 

variable separately [5 total] 

 

• Marginal (bivariate) distributions of pairs of 

variables [5x4/2 = 10 total] 

 

• Marginal (joint) distributions of 3 variables at 

a time [(5x4x3)/(3x2) = 10 total] 

 

• Marginal (joint) distributions of 4 variables at 

a time [5 total] 

 

But we can only easily plot and see 1 and 2 variable 

marginal plots. 

 

Most statistical software allows us to see all of these 

at one time with a scatterplot matrix. 

 

In arc, use the command on the Graph and Fit menu.  
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Example: Big Mac 

 

Note: 

 

• The order in which variables are entered 

determines the order in which they appear in the 

scatterplot matrix. 

 

• The variable on the vertical axis is the row label; 

the variable on the horizontal axis is the column 

label. 

 

• Shift-Control-Click (or some variation 

depending on platform) blows up an individual 

plot. 

 

Plots of the response vs a single explanatory variable 

are called marginal response plots. 

 

Example: The scatterplot matrix for the Big Mac data 

shows that some of the marginal response plots do 

not appear to show a linear mean function. 

 

Question: Does this imply that the mean function  for 

Big Mac conditioned on all four explanatory 

variables is not linear? 
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Special Case: Multivariate normal distribution.  
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 is the vector of means of the Xi's, 

and ! is an m x m matrix called the covariance 

matrix.  

 

 (Superscript T denotes matrix transpose.) 
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Case m = 2: If ! = 
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Note that 

! 

"#
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#
2 is the covariance of X1 and X2; in the 

general case, the i,jth entry of the covariance matrix 

will be the covariance of Xi and Xj. 
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Properties of multivariate normal distributions: 

 

Recall: If X1 and X2 are bivariate normal, then:  

• Each Xi is normal 

• E(X1| X2) = a + bX2.  

  

These properties generalize: 

 

If X1, X2, … , Xm are (jointly) multivariate normal, 

then:  

 

 1. Any subset of these variables is also 

(multivariate) normal. 

 

 2. Each conditional mean obtained by 

 conditioning one variable on a subset of the other 

 variables is a linear function of the remaining 

 variables -- e.g.,  

 

 E(X1 | X2, … , Xm) = "0 + "2X2+ … +"m Xm. 
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Consequences for Regression: 

 

1. If X1, X2, … , Xp, Y are multivariate normal, then 

each subset of X1, X2, … , Xp, Y is also (multivariate) 

normal. 

 

2. For each subset of X1, X2, … , Xp, the conditional 

mean of Y conditioned on those variables is a linear 

function of those variables. In particular: 

 

• E(Y| X1, X2, … , Xp) is a linear function of X1, 

X2, … , Xp (i.e., a linear model fits) 

 

• Even if we drop some predictors, a linear 

model fits. 

 

• For a single j, E(Y|xj) = a + bxj. 
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Practical consequence: If even one marginal response 

plot clearly indicates that the corresponding mean 

function is not linear, then X1, X2, … , Xp, Y are not 

multivariate normal. 

 

Caution: The converse is not true -- the marginal 

response plots might all be linear, without having the 

variables be multivariate normal. 
 

Examples:  

 1. n = 2: Y = X, X uniform on [0,1] 

 

 2. n = 3: Z = Y = X uniform on [0,1] 

 

Nonetheless, it is often useful to have marginals 

“linear” (i.e., with linear mean) and response Y 

normal. 

• It’s a little more reassuring that we might be able 

to drop predictors and still have a linear model. 

• Also, inference will assume conditionals of Y are 

normal. 

 

Thus, transforming variables more to this state can be 

helpful. Arc facilitates this by putting transformation 

slidebars on the scatterplot matrix.  
 


