THE MULTIPLE LINEAR REGRESSION MODEL

Notation:

p predictors $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{p}}$
(Some might be values of indicator variables for categorical variables.)
k -1 non-constant terms $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{k}-1}$
Each u_{j} is a function of $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{p}}$:

$$
\mathrm{u}_{\mathrm{j}}=\mathrm{u}_{\mathrm{j}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{p}}\right)
$$

For convenience, we often set $u_{0}=1$
(constant function/term)

The Basic Multiple Linear Regression Model:

Two assumptions:

1. $\mathrm{E}(\mathrm{Y} \mid \underline{\mathrm{x}})\left(\right.$ or $\mathrm{E}(\mathrm{Y} \mid \underline{\mathrm{u}})=\eta_{0}+\eta_{1} \mathrm{u}_{1}+\ldots+\eta_{\mathrm{k}-1} \mathrm{u}_{\mathrm{k}-1}$
(Linear Mean Function)
2. $\operatorname{Var}(\mathrm{Y} \mid \underline{\mathrm{x}})\left(\operatorname{or} \operatorname{Var}(\mathrm{Y} \mid \underline{\mathbf{u}})=\sigma^{2}\right.$
(Constant Variance)

Assumption (1) in vector notation:

$$
\underline{\mathrm{u}}=\left[\begin{array}{c}
u_{0} \\
u_{1} \\
\cdot \\
\cdot \\
\cdot \\
u_{k-1}
\end{array}\right]=\left[\begin{array}{c}
1 \\
u_{1} \\
\cdot \\
\cdot \\
\cdot \\
u_{k-1}
\end{array}\right], \quad \underline{\eta}=\left[\begin{array}{c}
\eta_{0} \\
\eta_{1} \\
\cdot \\
\cdot \\
\cdot \\
\eta_{k-1}
\end{array}\right]
$$

Then

$$
\underline{\eta}^{\mathrm{T}}=\left[\begin{array}{llll}
\eta_{0} & \eta_{1} & \ldots & \eta_{k-1}
\end{array}\right]
$$

and

$$
\underline{\eta}^{\mathrm{T}} \underline{u}=\eta_{0}+\eta_{1} \mathbf{u}_{1}+\ldots+\eta_{k-1} u_{k-1},
$$

so (1) becomes:
(1') $\mathrm{E}(\mathrm{Y} \mid \underline{\mathrm{x}})=\underline{\eta}^{\mathrm{T}} \underline{\underline{u}}$

Data:
$\mathrm{i}^{\text {th }}$ observation $\mathrm{x}_{\mathrm{i} 1}, \mathrm{x}_{\mathrm{i} 2}, \ldots, \mathrm{x}_{\mathrm{ip}}, \mathrm{y}_{\mathrm{i}}$
Recall

$$
\underline{\mathrm{x}}_{\mathrm{i}}=\left[\begin{array}{c}
x_{i 1} \\
x_{i 2} \\
\cdot \\
\cdot \\
\cdot \\
x_{i p}
\end{array}\right]=\left[x_{i 1}, x_{i 2}, \ldots, x_{i p}\right]^{\mathrm{T}}
$$

Define similarly

$$
\mathrm{u}_{\mathrm{ij}}=\mathrm{u}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{il}}, \mathrm{x}_{\mathrm{i} 2}, \ldots, \mathrm{x}_{\mathrm{ip}}\right)
$$

$=$ the value of the $\mathrm{j}^{\text {th }}$ term for the $\mathrm{i}^{\text {th }}$ observation,
and

$$
\underline{\mathrm{u}}_{\mathrm{i}}=\left[\begin{array}{c}
u_{i 0} \\
u_{i 1} \\
\cdot \\
\cdot \\
\cdot \\
u_{i, k-1}
\end{array}\right]
$$

So in particular, the model says: $\mathrm{E}\left(\mathrm{Y} \mid \underline{\mathrm{x}}_{\mathrm{i}}\right)=\underline{\eta}^{\mathrm{T}} \underline{\underline{u}}_{\mathrm{i}}$

Estimation of Parameters: Analogous to simple linear regression:

Consider functions of the form

$$
\mathrm{y}=\mathrm{h}_{0}+\mathrm{h}_{1} \mathrm{u}_{1}+\ldots+\mathrm{h}_{\mathrm{k}-1} \mathrm{u}_{\mathrm{k}-1}=\underline{\mathrm{h}}^{\mathrm{T}} \underline{\mathrm{u}} .
$$

(The graph of such an equation is a "hyperplane.")
The least squares estimate of $\underline{\eta}$ is the vector

$$
\underline{\hat{\eta}_{1}}=\left[\begin{array}{c}
\hat{\eta}_{0} \\
\hat{\eta}_{1} \\
\cdot \\
\cdot \\
\cdot \\
\hat{\eta}_{k-1}
\end{array}\right]
$$

that minimizes the "objective function"

$$
\operatorname{RSS}(\underline{\mathrm{h}})=\sum_{i=1}^{n}\left(y_{i}-\underline{h}^{T} \underline{u}_{i}\right)^{2}
$$

Recall:

In simple linear regression, the solution for $\hat{\eta}_{1}$ had

$$
\mathrm{SXX}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

in the denominator. So the formula for $\hat{\eta}_{1}$ won't work if all x_{i} 's $=\bar{x}$. In that case, there is not a unique solution to the least squares problem. (Draw a picture in the case $n=2$!)

In multiple regression:

There is a unique solution $\underline{\hat{\eta}}$ provided both:
i) $\mathrm{k}<\mathrm{n}$ (i.e., the number of terms is less than the number of observations)
ii) no u_{j} is (as a function) a linear combination of the other $u_{j}{ }^{\prime} s$

If there is a unique solution, it is called the ordinary least squares (OLS) estimate of the (vector $\underline{\eta}$ of) coefficients.

Examples where there is not a unique solution:

1. When $\mathrm{k}=2$ (simple linear regression) and there is only one data point.
2. $\mathrm{k}=2$ and both data points have the same x value.
3. Similar examples for larger k .
4. Two predictors, three terms with
$\mathrm{u}_{1}=\mathrm{x}_{1}, \mathrm{u}_{2}=\mathrm{x}_{2}, \mathrm{u}_{3}=\mathrm{x}_{1}+\mathrm{x}_{2}$
e.g., Scholastic Aptitude Test Scores (SAT) with terms SATM, SATM, SATM + SATV

Multicollinearity:

When condition (ii) is violated, we say there is (strict) multicollinearity. (e.g., example 4 above.)

A situation close to strict multicollinearity is typically called multicollinearity. Technically, there is a solution, but
a. The solutions involved small denominators,
which can make calculation virtually impossible.
(e.g., if $\mathrm{p}=1$ and if x is close to constant, then SXX is very small.)
b. The variances will be large, making inference virtually useless.

