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THE MULTIPLE LINEAR REGRESSION MODEL 

 

Notation:  

 

p predictors x1, x2, … , xp 

 

 (Some might be values of indicator variables 

   for categorical variables.) 

 

k-1 non-constant terms u1, u2, … , uk-1  

 

Each uj is a function of x1, x2, … , xp:  

 

uj = uj(x1, x2, … , xp) 

 

For convenience, we often set u0 = 1  

(constant function/term) 
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The Basic Multiple Linear Regression Model:  

 

Two assumptions: 

 

 1. E(Y|x) (or E(Y|u) = !0 + !1u1 + … + !k-1uk-1  

(Linear Mean Function) 

 

 2. Var(Y|x) (or Var(Y|u) = "2       

      (Constant Variance) 

 

Assumption (1) in vector notation: 
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Then  

!T = [!0  !1 …  !k-1]  

and  

 

 !Tu = !0 + !1u1 + … + !k-1uk-1,  

 

so (1) becomes: 

 

 (1') E(Y| x) = !Tu 
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Data:  

ith observation xi1, xi2, … , xip, yi  

 

Recall 
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 = [xi1, xi2, … , xip]
T 

 

Define similarly 

 

 uij = uj (xi1, xi2, … , xip)  

 

= the value of the jth term for the ith observation, 

 

and 
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So in particular, the model says:   E(Y|xi) = !Tui 
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Estimation of Parameters: Analogous to simple 

linear regression: 

 

Consider functions of the form 

 

 y = h0 + h1u1 + … + hk-1uk-1 = hTu. 

 

(The graph of such an equation is a "hyperplane.") 

 

The least squares estimate of ! is the vector 
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that minimizes the "objective function" 
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Recall:  

 

In simple linear regression, the solution for 

! 

ˆ " 
1 had  

 

SXX = 

! 

(x
i
" x )

2

i=1

n

#  

in the denominator. So the formula for 

! 

ˆ " 
1 won't work 

if all xi's = 

! 

x . In that case, there is not a unique 

solution to the least squares problem. (Draw a picture 

in the case n = 2!) 

 

In multiple regression:  

 

There is a unique solution 

! 

ˆ "  provided both: 

 

 i) k < n (i.e., the number of terms is less than 

the number of observations) 

 

 ii) no uj  is (as a function) a linear combination of 

the other uj's 

 

If there is a unique solution, it is called the ordinary 

least squares (OLS) estimate of the (vector ! of) 

coefficients.  
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Examples where there is not a unique solution: 

 

1. When k = 2 (simple linear regression) and there is 

only one data point. 

 

2. k = 2 and both data points have the same x value. 

 

3. Similar examples for larger k. 

 

4. Two predictors, three terms with 

 u1 = x1, u2 = x2, u3 = x1  + x2  

 

 e.g., Scholastic Aptitude Test Scores (SAT) with 

terms SATM, SATM, SATM + SATV 
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Multicollinearity:  

 

When condition  (ii) is violated, we say there is 

(strict) multicollinearity. (e.g., example 4 above.) 

 

A situation close to strict multicollinearity is typically 

called multicollinearity. Technically, there is a 

solution, but  

 

 a. The solutions involved small denominators, 

which can make calculation virtually impossible. 

(e.g., if p = 1 and if x is close to constant, then SXX 

is very small.) 

 

 b. The variances will be large, making inference 

virtually useless. 

 

 


