NOTATION FOR MULTIPLE LINEAR REGRESSION

Response variable Y (or y). Predictor variables $X_1, X_2, ..., X_p$.

Note:

- 1. This is a change in notation: the subscript *on the X's* now denotes *a different variable*, <u>not a different observation</u>.
- 2. p = number of predictor variables

So we would use $x_1, x_2, ..., x_p$ to denote the values of $X_1, X_2, ..., X_p$ at *one* observation (i.e., for one case).

For short:

$$\mathbf{X} \text{ (or } \underline{X} \text{ when handwritten)} = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_p \end{bmatrix} \text{ (or } \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_p \end{pmatrix}$$

(to refer to the random variables)

$$\mathbf{x} \text{ (or } \underline{\mathbf{x}}) = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} \text{ (or } \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{pmatrix}$$
 (to refer to specific values of the r.v.'s)

Example:

To label data:

First observation: $x_{11}, x_{12}, \dots, x_{1p}, y_1$ Second observation: $x_{21}, x_{22}, \dots, x_{2p}, y_2$

. n^{th} observation: $x_{n1}, x_{n2}, \dots, x_{np}, y_n$

Thus:

- n still = number of observations
- subscript on y is same as before
- first subscript on x is the observation number
- second subscript on x is the variable number
- i.e., x_{ij} = value of the j^{th} predictor at the i^{th} observation.

For short:

$$\mathbf{x}_{i} \text{ (or } \underline{\mathbf{x}}_{i}) = \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ip} \end{bmatrix} \text{ (or } \begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ip} \end{pmatrix}) --$$

the vector of values of the predictor variables at observation i.

The general goal of multiple regression:

Study how Y|x changes as x changes.

Example: Bic Mac

Y =the cost of a Big Mac in various countries

 X_i 's = various economic indicators.

We'll use Bread, TeachSal, TeachTax, BusFar, so p = ____.