PROBABILITY PLOTS

How to judge whether data come from a given distribution?

Histograms have problems.
Probability plots (AKA Q-Q plots or quantile plots):
. Order the data $\mathrm{y}_{1} \leq \mathrm{y}_{2} \leq \ldots \leq \mathrm{y}_{\mathrm{n}}$.
. Graph them vs. $\mathrm{q}_{1} \leq \mathrm{q}_{2} \leq \ldots \leq \mathrm{q}_{\mathrm{n}}$,
where
$\mathrm{q}_{\mathrm{k}}=$ the expected value (as approximated by computer) of the kth smallest member of a simple random sample of size n from the "test distribution".
(i.e., $q_{k}=$ the expected value of Y_{k}, if Y has the conjectured distribution)

If the data come from this distribution, we expect $\mathrm{y}_{\mathrm{k}} \approx \mathrm{q}_{\mathrm{k}}$, so the graph will lie approximately along the line $\mathrm{y}=\mathrm{x}$.

Variation often used to test for normality:

Take the q_{k} 's from the standard normal distribution.
If the y_{k} 's are sampled from an $\mathrm{N}(\mu, \sigma)$ distribution, then the transformed (standardized) data $\frac{y_{k}-\mu}{\sigma}$ come from a standard normal distribution, so we expect

$$
\frac{y_{k}-\mu}{\sigma} \approx \mathrm{q}_{\mathrm{k}}
$$

i.e., if the y_{k} 's are sampled from an $N(\mu, \sigma)$ distribution, then

$$
\mathrm{y}_{\mathrm{k}} \approx \sigma \mathrm{q}_{\mathrm{k}}+\mu
$$

so the graph should lie approximately on a straight line with slope and intercept σ and μ, respectively.

