REGRESSION MODELS

Various approaches.

I. Use theoretical considerations specific to the situation.

Two other approaches: Make model assumptions about joint or conditional distributions.

Terminology for these approaches:

Error:

e|x = Y|(X = x) - E(Y|X = x)

1

= Ylx - E(Ylx) for short

- So Y|x = E(Y|x) + e|x (Picture this ...)
- elx is a random variable
- E(e|x) = E(Y|x E(Y|x))= E(Y|x) - E(Y|x) = 0

• Var(e|x) =

• The distribution of elx is

II. *Second approach:* Start with assumptions about the joint distributions of the variables.

Example: Bivariate Normal Model

Suppose X and Y have a bivariate normal distribution.

(Of course, model assumption needs to be reasonable in a given application.)

Recall: This implies

- Ylx is normal
- $E(Y|x) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X} (x \mu_X)$ (linear mean function) • $Var(Y|x) = \sigma_Y^2 (1 - \rho^2)$

(constant variance)

Thus:	III. <i>Third approach</i> : Model th distributions.	III. <i>Third approach</i>: Model the conditional distributions.Most widely used/basic example:	
• $E(Y x) = \alpha + \beta x$ • $Var(Y x) = \sigma^2$ where	Most widely used/basic examp		
	"The" Simple Linear Re	egression Model	
	Only one explanatory variable	Only one explanatory variable.	
β =	Version 1: Only one assumption	Version 1: Only one assumption:	
$\alpha = \sigma^2 = \sigma^2$	1. E(Y x) is a linear f	1. $E(Y x)$ is a linear function of x.	
0 =	<i>Typical notation</i> : $E(Y x) = \eta_0 + \eta_1 x$		
So elx ~	(or $E(Y x) = \beta_0 + \beta_1 x$)		
	Equivalent formulation:	$Y x=\eta_0+\eta_1x+e x$	
	Interpretations of parame	Interpretations of parameters: (Picture!)	
	η_1 :		
	η_0 :	(if)	

4

3

Some cases where this model fits:

- X, Y bivariate normal
- Other situations

Example: Blood lactic acid

Why is this not bivariate normal?

5

• Model might also be used when mean function is not linear, but linear approximation is reasonable.

Note: In this model, Y must be a random variable, but X need not be.

The model involves *two parameters* η_0 and η_1 , which determine E(Y|x).

We need to estimate η_0 and η_1 from data.

Notation: The estimates of η_0 and η_1 will be called $\hat{\eta}_0$ and $\hat{\eta}_1$, respectively. From $\hat{\eta}_0$ and $\hat{\eta}_1$, we obtain an estimate

 $\hat{\mathbf{E}}\left(\mathbf{Y}|\mathbf{x}\right) = \hat{\eta}_0 + \hat{\eta}_1 \mathbf{x}$

of E(Y|x).

Note: $\hat{E}(Y|x)$ is the same notation we used earlier for the lowess estimate of E(Y|x). Be sure to keep the two estimates straight!

More terminology:

• We label our data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.

7

- $\hat{y}_i = \hat{\eta}_0 + \hat{\eta}_1 x_i$ is our resulting estimate $\hat{E}(Y|x_i)$ of $E(Y|x_i)$. It is called the *i*th *fitted value* or *i*th *fit.*
- $\hat{e}_i = y_i \hat{y}_i$ is called the *i*th residual.

Note: \hat{e}_i (the residual) is analogous to <u>but not the</u> <u>same</u> as elx_i (the error). Indeed, \hat{e}_i can be considered an estimate of the error elx_i = y_i - E(Ylx_i).

[Picture!]

Idea behind estimation methods:

Consider lines $y = h_0 + h_1 x$. We want the one that is "closest" to the data points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ collectively.

What does "closest" mean? Possibilities:

1. Usual math meaning: shortest perpendicular distance to point.

Problems:

- Gets unwieldy quickly.
- We're really interested in getting close to y for a given x -- which suggests:
- 2. Minimize $\sum d_i$, where $d_i = y_i (h_0 + h_1x_i) =$ vertical distance from point to candidate line. (Note: If the candidate line is the desired best fit then $d_i = ...$)

Problem: Some d_i's will be positive, some negative, so will cancel out in the sum. This suggests:

3. Minimize $\sum |d_i|$

This method is called "Minimum Absolute Deviation," (MAD) or "Least Absolute Deviation" (LAD).

9

Feasible with modern computers, and increasingly available. (e.g., Stata and R's quantreg package)

Problems:

- Can be computationally difficult and lengthy.
- Solution might not be unique. Example:
- Does not lend itself as readily as Method 4 (below) to inference for the estimates.

Strong points: It may be preferable to method 4 (below) in some situations; e.g.:

- (below) in some situations; e.g.:
- There is concern that outliers might be too influential.
- The conditional distributions YIX are not symmetric and the goal is to estimate the conditional median rather than the conditional mean.
- The conditional distributions have heavy tails.

4. Minimize $\sum d_i^2$ ("Method of Least Squares")

This works well!

(See demo.)

Terminology:

- ∑ d_i² is called the *residual sum of squares* (denoted *RSS*(h₀, h₁)) or the *objective function*.
- The values of h_0 and h_1 that minimize RSS(h_0 , h_1) are denoted $\hat{\eta}_0$ and $\hat{\eta}_1$, respectively, and called the *ordinary least squares* (or *OLS*) *estimates* of η_0 and η_1