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REGRESSION MODELS 

 

Various approaches. 

 

I. Use theoretical considerations specific to the 

situation. 

 

Two other approaches: Make model assumptions 

about joint or conditional distributions.  

 

Terminology for these approaches: 

 

Error:  e|x = Y|(X = x) - E(Y|X = x) 

  

    = Y|x - E(Y|x) for short 

 

• So Y|x = E(Y|x) + e|x  (Picture this …) 

 

• e|x is a random variable 

 

• E(e|x) = E(Y|x - E(Y|x))  

= E(Y|x) - E(Y|x) = 0 

 

• Var(e|x) = 

 

 

• The distribution of e|x is 

 

 2 

II. Second approach: Start with assumptions about 

the joint distributions of the variables.  

 

Example: Bivariate Normal Model 

 

Suppose X and Y have a bivariate normal 

distribution.  

 

(Of course, model assumption needs to be reasonable 

in a given application.) 

 

Recall: This implies 

 

• Y|x is normal 

 

• E(Y| x) = µY + !

! 

"
Y

"
X

(x - µX)     

      (linear mean function) 

• Var(Y|x) = "Y
2(1- !2)      

      (constant variance) 
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Thus: 

 

• E(Y|x) = % + $x 

 

• Var(Y|x) = "2 

 

where 

  

$ =  

 

% =  

 

"2 =  

 

 

So e|x ~ 
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III. Third approach: Model the conditional 

distributions.  

 

Most widely used/basic example:  

 

 "The" Simple Linear Regression Model 

  

Only one explanatory variable. 

 

Version 1: Only one assumption:  

 

1. E(Y|x) is a linear function of x. 

 

Typical notation:  E(Y|x) = #0 + #1x   

 

(or E(Y|x) = $0 + $1x) 

 

Equivalent formulation: Y|x = #0 + #1x + e|x 

 

Interpretations of parameters: (Picture!) 

 

 #1: 

 

#0 :        (if …) 
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Some cases where this model fits: 

 

• X, Y bivariate normal 

 

• Other situations  

 

Example: Blood lactic acid 

 

  Why is this not bivariate normal? 

 

• Model might also be used when mean 

function is not linear, but linear 

approximation is reasonable. 

 

 

Note: In this model, Y must be a random 

variable, but X need not be. 
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The model involves two parameters #0 and #1, which 

determine E(Y|x).  

 

 We need to estimate #0 and #1 from data. 

 

Notation: The estimates of #0 and #1 will be called 

! 

ˆ " 
0  

and 

! 

ˆ " 
1, respectively. From 

! 

ˆ " 
0  and 

! 

ˆ " 
1, we obtain an 

estimate 

         

! 

ˆ E (Y|x) = 

! 

ˆ " 
0  +

! 

ˆ " 
1x  

of E(Y|x). 

 

Note: 

! 

ˆ E (Y|x)  is the same notation we used earlier for 

the lowess estimate of E(Y|x). Be sure to keep the 

two estimates straight! 
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More terminology:  

 

• We label our data (x1, y1), (x2, y2), … , (xn, yn). 

 

• 

! 

ˆ y i  = 

! 

ˆ " 
0  +

! 

ˆ " 
1xi is our resulting estimate 

! 

ˆ E (Y|xi) 

of E(Y|xi). It is called the ith fitted value or ith 

fit. 

 

• 

! 

ˆ e 
i =  yi - 

! 

ˆ y i  is called the ith residual. 

 

Note: 

! 

ˆ e 
i  (the residual) is analogous to but not the 

same as e|xi (the error). Indeed, 

! 

ˆ e 
i  can be considered 

an estimate of the error e|xi = yi - E(Y|xi). 

 

[Picture!] 
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Idea behind estimation methods: 

 

Consider lines y = h0 + h1x. We want the one that is 

"closest" to the data points (x1, y1), (x2, y2), … ,  

(xn, yn) collectively. 

 

What does "closest" mean? Possibilities: 

 

1. Usual math meaning: shortest perpendicular 

distance to point. 

 

Problems:  

• Gets unwieldy quickly.  

• We're really interested in getting close to y for 

a given x -- which suggests: 

 

2. Minimize & di, where di = yi - (h0 + h1xi) = vertical 

distance from point to candidate line. (Note: If the 

candidate line is the desired best fit then di =         .) 

 

 Problem: Some di's will be positive, some negative, 

so will cancel out in the sum. This suggests: 
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3. Minimize & |di| 

 

 This method is called “Minimum Absolute 

Deviation,” (MAD) or “Least Absolute Deviation” 

(LAD).   

 

Feasible with modern computers, and increasingly 

available. (e.g., Stata and R’s quantreg package) 

 

 Problems: 

• Can be computationally difficult and lengthy. 

• Solution might not be unique. 

Example: 

• Does not lend itself as readily as Method 4 

(below) to inference for the estimates. 

  

Strong points: It may be preferable to method 4 

(below) in some situations; e.g.: 

• There is concern that outliers might be too 

influential. 

• The conditional distributions Y|X are not 

symmetric and the goal is to estimate the 

conditional median rather than the conditional 

mean. 

• The conditional distributions have heavy tails. 

 

 

 10 

4. Minimize & di
2  (“Method of Least Squares”) 

 

 This works well!    (See demo.) 

 

Terminology:  

 

• & di
2 is called the residual sum of squares 

(denoted RSS(h0, h1)) or the objective function. 

 

• The values of h0 and h1 that minimize     

RSS(h0, h1) are denoted 

! 

ˆ " 
0  and 

! 

ˆ " 
1, 

respectively, and called the ordinary least 

squares (or OLS) estimates of #0   and #1 

 
 

 


