2

SELECTING TERMS (Supplement to Section 11.5)

Transforming toward multivariate normality helped deal with the problem that deleting terms from the full model might result in a non-linear mean term or non-constant variance.

Another possible problem: Dropping terms might introduce bias.

First observe: When we drop terms and refit using least squares, the coefficient estimates may change.

Example: The highway data.

Explanatory Example: Suppose the correct model has mean function

$$E(Y|\mathbf{x}) = \eta_0 + \eta_1 u_1 + \eta_2 u_2.$$

Then

$$Y = \eta_0 + \eta_1 u_1 + \eta_2 u_2 + \varepsilon.$$

(So ε is a random variable with $E(\varepsilon) = 0$.)

Suppose further that

$$\mathbf{u}_2 = 2\mathbf{u}_1 + \mathbf{\delta},$$

where δ is a random variable with $E(\delta) = 0$.

Then

1

$$Y = \eta_0 + \eta_1 u_1 + \eta_2 (2u_1 + \delta) + \epsilon$$

$$= \eta_0 + (\eta_1 + 2\eta_2) u_1 + (\eta_2 \delta + \epsilon)$$

$$= \eta_0' + \eta_1' u_1 + \epsilon'$$

where
$$\eta_0' = \eta_0$$
, $\eta_1' = \eta_1 + 2\eta_2$, and $\epsilon' = \eta_2 \delta + \epsilon$.

Since

$$E(\varepsilon') = E(\eta_2 \delta + \varepsilon) = \eta_2 E(\delta) + E(\varepsilon) = 0,$$

the mean function for the submodel is

$$E(Y|\mathbf{x}) = \eta_0' + \eta_1' u_1.$$

Now suppose we fit both models by least squares, giving fits \hat{y}_i for the full model and $\hat{y}_{i,\text{sub}}$ for the submodel.

Recalling that

- 1) the least squares estimates are unbiased *for the model used*,
- 2) u_{i1} denotes the value of term u_1 at observation i, etc., and
- 3)we are fixing the x-values, and hence the u-values, of the observations,

we have that the expected values of the sampling distributions of \hat{y}_i and $\hat{y}_{i_{sub}}$ are:

$$E(\hat{y}_i) = \eta_0 + \eta_1 u_{i1} + \eta_2 u_{i2} = \eta_0 + \eta_1 u_{i1} + \eta_2 (2u_{i1} + \delta_i)$$

where δ_i is the value of δ for observation i, and

$$E(\hat{y}_{isub}) = \eta_0' + \eta_1' u_{i1} = \eta_0 + (\eta_1 + 2\eta_2) u_{i1}.$$

Note that $E(\hat{y}_i)$ has the additional term $\eta_2 \delta_i$ that $E(\hat{y}_{isub})$ doesn't have.

Thus, if the full model is the true model, then $\hat{y}_{i_{sub}}$ is a biased estimator of $E(Y|\mathbf{x}_i)$

Definition: The bias of an estimator is the difference between the expected value of the estimator and the parameter being estimated.

So for parameter $E(Y \mid \mathbf{x}_i)$ and estimator $\hat{y}_{i,\text{sub}}$,

bias
$$(\hat{y}_{i_{\text{sub}}}) = E(\hat{y}_{i_{\text{sub}}}) - E(Y \mid \mathbf{x}_{i}).$$

A counterbalancing consideration: Dropping terms might also reduce the variance of the coefficient estimators -which is desirable!

To see this, we use a formula (see Section 10.1.5) for the sampling variance of the coefficient estimators: The variance of the coefficient estimator $\hat{\eta}_i$ in a model is

$$\operatorname{Var}(\hat{\boldsymbol{\eta}}_{j}) = \frac{\sigma^{2}}{SU_{j}U_{j}} \frac{1}{1 - R_{j}^{2}},$$

where SU_iU_i is defined like SXX, and R_i² is the coefficient of multiple determination for the regression of u, on the other terms in the model.

Note:

- The first factor is independent of the other terms.
- Adding a term usually increases R_j².
 Deleting one usually decreases R_j².

Thus:

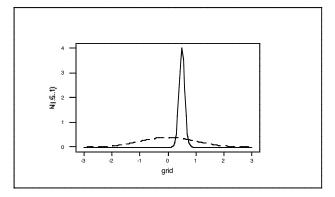
- Adding a term usually increases $Var(\hat{\eta}_i)$
- Deleting a term usually decreases $Var(\hat{\eta}_i)$ (i.e., gives a more precise estimate of η_i)
- Since \hat{y}_i is a linear combination of the $\hat{\eta}_i$'s, the effect will be the same for $Var(\hat{y}_i)$.

Summarizing:

Dropping terms might introduce bias (bad) but might reduce variance (good).

Sometimes, having biased estimates is the lesser of two evils.

The following picture illustrates this: One estimator has distribution N(0, 1) and is unbiased; the other has distribution N(0.5, 0.1) and is hence biased but has smaller variance:



One way to address this problem is to evaluate the model by a measure that includes both bias and variance.

This is the *mean squared error*: The expected value of the square of the error between the fitted value (for the submodel) and the true conditional mean at \mathbf{x}_i :

Definition: The *mean squared error* of a fitted value is

MSE
$$(\hat{y}_i) = E([\hat{y}_i - E(Y \mid \mathbf{x}_i)]^2).$$

We'd like this to be small.

Comments:

- 1. MSE (\hat{y}_i) is defined like the sampling variance of \hat{y}_i , but using $E(Y \mid \mathbf{x}_i)$ instead of $E(\hat{y}_i)$.
- 2. Thus, if \hat{y}_i is an unbiased estimator of $E(Y \mid \mathbf{x}_i)$, then

$$MSE(\hat{y}_i) =$$

- 3. Do not confuse the MSE with earlier use of "Mean Squared Error" to mean Residual Mean Square (RSS/df).
- 4. MSE is not a statistic, since it involves the parameter $E(Y \mid \mathbf{x}_i)$. We will eventually need to estimate it.

Details on MSE:

1)
$$\operatorname{Var}(\hat{y}_{i} - \operatorname{E}(\mathbf{Y} \mid \mathbf{x}_{i}))$$

$$= \operatorname{E}([\hat{y}_{i} - \operatorname{E}(\mathbf{Y} \mid \mathbf{x}_{i})]^{2}) - [\operatorname{E}(\hat{y}_{i} - \operatorname{E}(\mathbf{Y} \mid \mathbf{x}_{i}))]^{2}$$

$$= \operatorname{MSE}(\hat{y}_{i}) - [\operatorname{E}(\hat{y}_{i}) - \operatorname{E}(\mathbf{Y} \mid \mathbf{x}_{i})]^{2}$$

$$= \operatorname{MSE}(\hat{y}_{i}) - [\operatorname{bias}(\hat{y}_{i})]^{2}.$$

7

2) Since $E(Y \mid \mathbf{x}_i)$ is constant,

$$\operatorname{Var}(\hat{y}_i - \operatorname{E}(Y \mid \mathbf{x}_i)) = \operatorname{Var}(\hat{y}_i).$$

Thus,

$$MSE(\hat{y}_i) = Var(\hat{y}_i) + [bias(\hat{y}_i)]^2$$
.

So MSE is a combined measure of variance and bias.

Summarizing:

• Deleting a term typically decreases $Var(\hat{y}_i)$ but increases bias.

8

• So we want to play these effects off against each other by minimizing MSE (\hat{y}_i) .

But we need to do this minimization for all i's, so we consider the total mean squared error

$$J = \sum_{i=1}^{n} MSE(\hat{y}_{i})$$

$$= \sum_{i=1}^{n} \{Var(\hat{y}_{i}) + [bias(\hat{y}_{i})]^{2}\}$$

$$= \sum_{i=1}^{n} Var(\hat{y}_{i}) + \sum_{i=1}^{n} [bias(\hat{y}_{i})]^{2}.$$
(*)

We want small J.

Note: If the submodel is unbiased, then each \hat{y}_i will be unbiased, so J will = $\sum_{i=1}^{n} \operatorname{Var}(\hat{y}_i)$.

Since J involved the parameters $E(Y \mid \mathbf{x}_i)$, we need to estimate it.

It works better to estimate the *total normed mean squared error*

$$\gamma \text{ (or } \Gamma) = J/\sigma^2 \tag{**}$$

 $(\sigma^2$ = the conditional variance of the *full* model).

Recall: \hat{y}_i is the fitted value for the *submodel*.

Thus γ depends on the *submodel*.

Hence we call it γ_I , where I is the set of terms retained in the submodel.

If the submodel is *unbiased*, then

$$\gamma_{\rm I} = (1/\sigma^2) \sum_{i=1}^n {\rm Var}(\hat{y}_i),$$

Appropriate calculations give

$$(1/\sigma^2)\sum_{i=1}^n \text{Var}(\hat{y}_i) = k_I,$$
 (***)

= number of terms in I.

(True for both biased and unbiased submodels)

This implies: In an unbiased model, $\gamma_I = k_I$

Thus: γ_I close to k_I implies that the submodel has small bias.

Summarizing: A good submodel has γ_I

- (i) small (to get small total error)
- (ii) near k_I (to get small bias).

Combining (*), (**), and (***) gives

$$\gamma_{I} = J/\sigma^{2}$$

$$= (1/\sigma^{2}) \sum_{i=1}^{n} \operatorname{Var}(\hat{y}_{i}) + (1/\sigma^{2}) \sum_{i=1}^{n} [\operatorname{bias}(\hat{y}_{i})]^{2}$$

$$= k_{I} + (1/\sigma^{2}) \sum_{i=1}^{n} [\operatorname{bias}(\hat{y}_{i})]^{2}.$$

To estimate $\sum_{i=1}^{n} [\text{bias } (\hat{y}_i)]^2$, we can use

$$(n - k_I)(\hat{\sigma}_I^2 - \hat{\sigma}^2),$$

where $\hat{\sigma}_I^2$ = the estimated conditional variance for the submodel

Thus *Mallow's* C_I *statistic*

$$C_{I} = k_{I} + \frac{(n - k_{I})(\hat{\sigma}_{I}^{2} - \hat{\sigma}^{2})}{\hat{\sigma}^{2}}$$

is an estimator of γ_{I} .

(It is sometimes called C_p , where $p = k_I$.)

Algebraic manipulation gives an alternate form:

$$C_{I} = k_{I} + (n - k_{I}) \frac{\hat{\sigma}_{I}^{2}}{\hat{\sigma}^{2}} - (n - k_{I})$$

$$= \frac{RSS_{I}}{\hat{\sigma}^{2}} + 2k_{I} - n. \quad (RSS_{I} = RSS_{sub})$$

Thus: We can use Mallow's statistic to help identify good candidates for submodels by looking for submodels where C_I is both

- (i) small (suggesting small total error) and
 - (ii) $\leq k_I$ (suggesting small bias)

Comments:

- 1. Mallow's statistic is provided by many software packages in some model-selection routine. Arc gives it in both Forward selection and Backward elimination. Other software (e.g., Minitab) may use different procedures for Forward and Backward selection/elimination, but give Mallow's statistic in another routine (e.g., Best Subsets)
- 2. Since C_I is a statistic, it will have sampling variability.
 - C_I could be negative, suggesting small bias.
 - C_I might be > k_I even with an unbiased model, but we can't distinguish this from a case where there is bias but C_I happens to be less than γ_I.