One aspect of regression is to see how the "center" of the conditional distributions varies as a function of the explanatory variable -- e.g., to express $\mathrm{E}(\mathrm{YIX}=\mathrm{x})$ as a function of x .

A smooth is a curve constructed (by a computer algorithm) to go through or close to all points ($\mathrm{x}, \mathrm{f}(\mathrm{x})$) of certain function.

Examples:

- A "mean smooth" goes through or close to all points ($\mathrm{x}, \mathrm{E}(\mathrm{YIX}=\mathrm{x})$.
- A "median smooth" goes through or close to all points ($\mathrm{x}, \operatorname{med}(\mathrm{YIX}=\mathrm{x})$.

Example: In the fish data, we have seen both a median smooth (transparency) and a lowess mean smooth (constructed by arc).

Note: The median smooth was easy to construct for the fish data, since there were just a few values of the explanatory variable.

Example: Try this with the haystack data -- we need to choose the number of "slices," introducing the idea of a smoothing parameter.

Note: 1. What does the haystack smooth help us see in the data?
2. Arc also has a "slice smooth" function illustrating how a parameter in involved in creating a smooth.

The lowess (locally weighted scatterplot smoother) smooth can be found on most statistical software .

Outline of how the lowess curve is calculated

- Start with data points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \ldots\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$.
- Select a smoothing parameter f between 0 and 1 . (We'll use $\mathrm{f}=0.5$ for illustration.)
- For each i,
a. Look at the half (if $\mathrm{f}=1 / 2 ; 1 / 4$ if $\mathrm{f}=1 / 4$, etc.) of the data with x values closest to x_{i}.
b. Fit a line (using weighted least squares -- we may talk about this later) to these points in a way that gives more weight to points with x closest to x_{i}.
c. Replace y_{i} with $y_{i}{ }^{\prime}=$ the y-value of the point on this line corresponding to x_{i}. (So $y_{i}{ }^{\prime}$ "adjusts" y_{i} to be influenced by nearby data points.)
- After doing this separately for each i , repeat the procedure using points ($\mathrm{x}, \mathrm{y}_{\mathrm{i}}^{\prime}$) (so the effect of points away from the trend will probably be less.)
- After a few iterations of this process, connect all the current "adjusted" points.

