STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS

Recall:

Assumption: $\mathrm{E}(\mathrm{Y} \mid \mathrm{x})=\eta_{0}+\eta_{1} \mathrm{x} \quad$ (linear conditional mean function)
Data: $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \ldots,\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$
Least squares estimator: $\hat{\mathrm{E}}(\mathrm{Y} \mid \mathrm{x})=\hat{\eta}_{0}+\hat{\eta}_{1} \mathrm{x}$, where

$$
\begin{aligned}
& \hat{\eta}_{1}=\frac{S X Y}{S X X} \quad \hat{\eta}_{0}=\bar{y}-\hat{\eta}_{1} \bar{x} \\
& \operatorname{SXX}=\sum\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)^{2}=\sum \mathrm{x}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right) \\
& \mathrm{SXY}=\sum\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)\left(\mathrm{y}_{\mathrm{i}}-\bar{y}\right)=\sum\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right) \mathrm{y}_{\mathrm{i}}
\end{aligned}
$$

Comments:

1. So far we have estimates of the parameters η_{0} and η_{1}, but have no idea how good these estimates are.
2. If our data were the entire population, we could also use the same least squares procedure to fit an approximate line to the conditional sample means.
3. If we have a simple random sample from the population and also assume that elx (equivalently, $\mathrm{Y} \mid \mathrm{x}$) is normal with constant variance, then the least squares estimates are the same as the maximum likelihood estimates of η_{0} and η_{1}.

Properties of $\hat{\eta}_{0}$ and $\hat{\eta}_{1}$:

1) $\hat{\eta}_{1}=\frac{S X Y}{S X X}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{S X X}=\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)}{S X X} y_{i}=\sum_{i=1}^{n} c_{i} y_{i}$
where $\mathrm{c}_{\mathrm{i}}=\frac{\left(x_{i}-\bar{x}\right)}{S X X}$
Thus: If the x_{i} 's are fixed (as in the blood lactic acid example), then $\hat{\eta}_{1}$ is a linear combination of the y_{i} 's.

Note: Here we want to think of each y_{i} as an observation from a random variable Y_{i} with distribution Y_{x}. Saying that the y_{i} 's are independent is the same as saying that the Y_{i} 's are independent random variables. Thus, if the y_{i} 's are independent and each $\mathrm{Y}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$ is normal, then $\hat{\eta}_{1}$ is also normal. If the $\mathrm{Ylx}_{\mathrm{i}}$'s are not normal but n is large, then $\hat{\eta}_{1}$ is approximately normal. This will allow us to do inference on $\hat{\eta}_{1}$. (Details later.)
2) $\sum \mathrm{c}_{\mathrm{i}}=\sum \frac{\left(x_{i}-\bar{x}\right)}{S X X}=\frac{1}{S X X} \sum\left(x_{i}-\bar{x}\right)=0$ (as seen in establishing the alternate expression for SXX)
3) $\sum \mathrm{x}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}=\sum \mathrm{x}_{\mathrm{i}} \frac{\left(x_{i}-\bar{x}\right)}{S X X}=\frac{1}{S X X} \sum x_{i}\left(x_{i}-\bar{x}\right)=\frac{S X X}{S X X}=1$.

Remark: Recall the somewhat analogous properties for the residuals \hat{e}_{i}.
4) $\hat{\eta}_{0}=\bar{y}-\hat{\eta}_{1} \bar{x}=\frac{1}{n} \sum_{i=1}^{n} y_{i}-\sum_{i=1}^{n} c_{i} y_{i} \bar{x}=\sum_{i=1}^{n}\left(\frac{1}{n}-c_{i} \bar{x}\right) y_{i}$, also a linear combination of the $\mathrm{y}_{\mathrm{i}} \mathrm{'s}^{\mathrm{s}}$, hence ...
5) The sum of the coefficients in (4) is $\sum_{i=1}^{n}\left(\frac{1}{n}-c_{i} \bar{x}\right)=\sum_{i=1}^{n}\left(\frac{1}{n}\right)-\bar{x} \sum_{i=1}^{n} c_{i}=n\left(\frac{1}{n}\right)-\bar{x} 0=1$.

Sampling distributions of $\hat{\eta}_{0}$ and $\hat{\eta}_{1}$:

Consider $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ as fixed (i.e., condition on $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$).
Model Assumptions ("The" Simple Linear Regression Model Version 2):

1. $\mathrm{E}(\mathrm{Y} \mid \mathrm{x})=\eta_{0}+\eta_{1} \mathrm{x} \quad$ (linear conditional mean function)
2. $(N E W) \operatorname{Var}(\mathrm{Y} \mid \mathrm{x})=\sigma^{2}$ (Equivalently, $\left.\operatorname{Var}(\mathrm{e} \mathrm{x})=\sigma^{2}\right) \quad$ (constant variance)
3. (NEW) $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}$ are independent observations. (independence)

The new assumption means we can consider y_{1}, \ldots, y_{n} as coming from n independent random variables Y_{1}, \ldots, Y_{n}, where Y_{i} has the distribution of $\mathrm{Y}_{\mathrm{X}_{\mathrm{i}}}$.

Comment: We do not assume that the x_{i} 's are distinct. If, for example, $\mathrm{x}_{1}=\mathrm{x}_{2}$, then we are assuming that y_{1} and y_{2} are independent observations from the same conditional distribution $\mathrm{Y}_{\mathrm{X}}^{1}$.

Since Y_{1}, \ldots, Y_{n} are random variables, so is $\hat{\eta}_{1}-$ but it depends on the choice of x_{1}, \ldots, x_{n}, so we can talk about the conditional distribution $\hat{\eta}_{\mathrm{l}} \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$.

Expected value of $\hat{\eta}_{1}$ (as the y_{i}^{\prime} 's vary):

$$
\begin{array}{rlr}
\mathrm{E}\left(\hat{\eta}_{1} \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) & =\mathrm{E}\left(\sum_{i=1}^{n} c_{i} Y_{i} \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\sum \mathrm{c}_{\mathrm{i}} \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& \left.=\sum \mathrm{c}_{\mathrm{c}} \mathrm{E}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}}\right) \quad \text { (since } \mathrm{Y}_{\mathrm{i}} \text { depends only on } \mathrm{x}_{\mathrm{i}}\right) \\
& \left.=\sum \mathrm{c}_{\mathrm{i}} \eta_{0}+\eta_{1} \mathrm{x}_{\mathrm{i}}\right) \quad \text { (model assumption) } \\
& =\eta_{0} \sum \mathrm{c}_{\mathrm{i}}+\eta_{1} \mathrm{c}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}} & \\
& =\eta_{0} 0+\eta_{1} 1=\eta_{1} &
\end{array}
$$

Thus: $\hat{\eta}_{1}$ is an unbiased estimator of η_{1}.

Variance of $\hat{\eta}_{1}$ (as the y_{i} 's vary):

$$
\begin{array}{rlr}
\operatorname{Var}\left(\hat{\eta}_{1} \mid \mathrm{x}_{1}, \ldots,\right. & \left.\mathrm{x}_{\mathrm{n}}\right) & =\operatorname{Var}\left(\sum_{i=1}^{n} c_{i} Y_{i} \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\sum \mathrm{c}_{\mathrm{i}}^{2} \operatorname{Var}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \\
& =\sum \mathrm{c}_{\mathrm{i}}{ }^{2} \operatorname{Var}\left(\mathrm{Y}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right) \\
& =\sum \mathrm{c}_{\mathrm{i}}^{2} \sigma^{2} \\
& =\sigma^{2} \sum \mathrm{c}_{\mathrm{i}}^{2} \\
& =\sigma^{2} \sum\left(\frac{\left(x_{i}-\bar{x}\right)}{S X X}\right)^{2} \\
& =\frac{\sigma^{2}}{(S X X)^{2}} \sum\left(x_{i}-\bar{x}\right)^{2} \\
& =\frac{\sigma^{2}}{S X X} & \text { (since } \left.\mathrm{Y}_{\mathrm{i}} \text { depends only on } \mathrm{x}_{\mathrm{i}}\right)
\end{array}
$$

For short: $\operatorname{Var}\left(\hat{\eta}_{1}\right)=\frac{\sigma^{2}}{S X X}$

$$
\therefore \mathrm{SD}\left(\hat{\eta}_{1}\right)=\frac{\sigma}{\sqrt{S X X}}
$$

Comments: This is vaguely analogous to the sampling standard deviation for a mean \bar{y} :

$$
\mathrm{SD}(\text { estimator })=\frac{\text { population standard deviation }}{\sqrt{\text { something }}}
$$

However, here the "something," namely SXX, is more complicated. But we can still analyze this formula to see how the standard deviation varies with the conditions of sampling. For \bar{y}, the denominator is the square root of n , so we see that as n becomes larger, the sampling standard deviation of \bar{y} gets smaller. Here, recalling that SXX $=\sum\left(\mathrm{x}_{\mathrm{i}}-\bar{x}\right)^{2}$, we reason that:

- If the x_{i} 's are far from \bar{x} (i.e., spread out), SXX is \qquad , so $\operatorname{SD}\left(\hat{\eta}_{1}\right)$ is \qquad .
- If the x_{i} 's are close to \bar{x} (i.e., close together), SXX is \qquad , so $\operatorname{SD}\left(\hat{\eta}_{1}\right)$ is
\qquad .

Thus if you are designing an experiment, choosing the x_{i} 's to be \qquad from their mean will result in a more precise estimate of $\hat{\eta}_{1}$. (Assuming all the model conditions fit!)

Expected value and variance of $\hat{\eta}_{0}$:
Using the formula $\hat{\eta}_{0}=\sum_{i=1}^{n}\left(\frac{1}{n}-c_{i} \bar{x}\right) y_{i}$, calculations (left to the interested student) similar to those for $\hat{\eta}_{1}$ will show:

- $\mathrm{E}\left(\hat{\eta}_{0}\right)=\eta_{0}$
(So $\hat{\eta}_{0}$ is an unbiased estimator of η_{0}.)
- $\operatorname{Var}\left(\hat{\eta}_{0}\right)=\sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S X X}\right)$, so

$$
\mathrm{SD}\left(\hat{\eta}_{0}\right)=\sigma \sqrt{\frac{1}{n}+\frac{\bar{x}^{2}}{S X X}}
$$

Analyzing the variance formula:

- A larger \bar{x} gives a \qquad variance for $\hat{\eta}_{0}$.
\rightarrow Does this agree with intuition?
- A larger sample size tends to give a \qquad variance for $\hat{\eta}_{0}$.
- The variance of $\hat{\eta}_{0}$ is (except when $\bar{x}<1$) \qquad than the variance of $\hat{\eta}_{1}$.
\rightarrow Does this agree with intuition?
- The spread of the x_{i} 's affects the variance of $\hat{\eta}_{0}$ in the same way it affects the variance of $\hat{\eta}_{1}$.

Covariance of $\hat{\eta}_{0}$ and $\hat{\eta}_{1}$: Similar calculations (left to the interested student) will show

$$
\operatorname{Cov}\left(\hat{\eta}_{0}, \hat{\eta}_{1}\right)=-\sigma^{2} \frac{\bar{x}}{S X X}
$$

Thus:

- $\hat{\eta}_{0}$ and $\hat{\eta}_{1}$ are not independent (except possibly when \qquad)
\rightarrow Does this agree with intuition?
- The sign of $\operatorname{Cov}\left(\hat{\eta}_{0}, \hat{\eta}_{1}\right)$ is opposite that of \bar{x}.
\rightarrow Does this agree with intuition?
Estimating σ^{2} : To use the variance formulas above for inference, we need to estimate σ^{2} (= $\operatorname{Var}\left(\mathrm{Ylx}_{\mathrm{i}}\right)$, the same for all i).

First, some plausible reasoning: If we had lots of observations $y_{i_{i}}, y_{i_{i}}, \ldots, y_{i_{m}}$ from $\mathrm{Y}_{\mathrm{x}}^{\mathrm{i}}$, then we could use the univariate standard deviation

$$
\frac{1}{m-1} \sum_{j=1}^{m}\left(y_{i_{j}}-\bar{y}_{i}\right)^{2}
$$

of these m observations to estimate σ^{2}. (Here \bar{y}_{i} is the mean of $y_{i_{i}}, y_{i}, \ldots, y_{i_{m}}$, which would be our best estimate of $\mathrm{E}\left(\mathrm{Y} \mid \mathrm{x}_{\mathrm{i}}\right)$ just using $\left.y_{i}, y_{i}, \ldots, y_{i_{m}}\right)$

We don't typically have lots of y 's from one x_{i}, so we might try (reasoning that $\left.\hat{E}\left(Y \mid x_{i}\right)\right)$ is our best estimate of $\left.\mathrm{E}\left(\mathrm{Y}_{\mathrm{x}} \mathrm{i}\right)\right)$

$$
\frac{1}{n-1} \sum_{i=1}^{n}\left[y_{i}-\hat{E}\left(Y \mid x_{i}\right)\right]^{2}
$$

$$
\begin{aligned}
& =\frac{1}{n-1} \sum_{i=1}^{n} \hat{e}_{i}^{2} \\
& =\frac{1}{n-1} R S S .
\end{aligned}
$$

However (just as in the univariate case, we need a denominator n-1 to get an unbiased estimator), a lengthy calculation (omitted) will show that

$$
\mathrm{E}\left(\operatorname{RSSI} \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=(\mathrm{n}-2) \sigma^{2}
$$

(where the expected value is over all samples of the y_{i} 's with the x_{i} 's fixed)
Thus we use the estimate

$$
\hat{\sigma}^{2}=\frac{1}{n-2} R S S
$$

to get an unbiased estimator for σ^{2} :

$$
\mathrm{E}\left(\hat{\sigma}^{2} \mid \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\sigma^{2}
$$

[If you like to think heuristically in terms of losing one degree of freedom for each calculation from data involved in the estimator, this makes sense: Both $\hat{\eta}_{0}$ and $\hat{\eta}_{1}$ need to be calculated from the data to get RSS.]

Standard Errors for $\hat{\eta}_{0}$ and $\hat{\eta}_{1}$: Using

$$
\hat{\sigma}=\sqrt{\frac{R S S}{n-2}}
$$

as an estimate of σ in the formulas for $\operatorname{SD}\left(\hat{\eta}_{0}\right)$ and $\operatorname{SD}\left(\hat{\eta}_{1}\right)$, we obtain the standard errors

$$
\text { s.e. }\left(\hat{\eta}_{1}\right)=\frac{\hat{\sigma}}{\sqrt{S X X}}
$$

and

$$
\text { s.e. }\left(\hat{\eta}_{0}\right)=\hat{\sigma} \sqrt{\frac{1}{n}+\frac{\bar{x}^{2}}{S X X}}
$$

as estimates of $\operatorname{SD}\left(\hat{\eta}_{1}\right)$ and $\operatorname{SD}\left(\hat{\eta}_{0}\right)$, respectively.

