STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS

1

Recall:

Assumption: $E(Y|x) = \eta_0 + \eta_1 x$ (linear conditional mean function)

Data: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

Least squares estimator: $\hat{E}(Y|x) = \hat{\eta}_0 + \hat{\eta}_1 x$, where

 $\hat{\eta}_1 = \frac{SXY}{SXX}$ $\hat{\eta}_0 = \overline{y} - \hat{\eta}_1 \overline{x}$

and

SXX = $\sum (x_i - \overline{x})^2 = \sum x_i (x_i - \overline{x})$

SXY = $\sum (x_i - \overline{x}) (y_i - \overline{y}) = \sum (x_i - \overline{x}) y_i$

Comments:

1. So far we have estimates of the parameters η_0 and η_1 , but have no idea how good these estimates are.

2. If our data were the entire population, we could also use the same least squares procedure to fit an approximate line to the conditional means.

3. If we have a simple random sample from the population and also assume elx (equivalently, Ylx) is normal with constant variance, then the least squares estimates are the same as the maximum likelihood estimates of η_0 and η_1 .

Properties of $\hat{\eta}_0$ **and** $\hat{\eta}_1$ **:**

1)
$$\hat{\eta}_{i} = \frac{SXY}{SXX}$$

$$= \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})y_{i}}{SXX}$$

$$= \sum_{i=1}^{n} \frac{(x_{i} - \bar{x})}{SXX}y_{i}$$

$$= \sum_{i=1}^{n} c_{i}y_{i}$$
where $\mathbf{c}_{i} = \frac{(x_{i} - \bar{x})}{SXX}$

Thus: If the x_i 's are fixed (as in the blood lactic acid example, or in any example if we condition on x_1, x_2, \dots, x_n), then $\hat{\eta}_1$ is a linear combination of the y_i 's.

3

Note: Here we want to think of each y_i as an observation from a random variable Y_i with distribution $Y|x_i$. Thus we may say that as a random variable (i.e., looking at the *sampling distribution* of $\hat{\eta}_i$)

$$\hat{\eta}_{l} = \sum_{i=1}^{n} c_{i}(Y \mid x_{i}) = \sum_{i=1}^{n} c_{i}Y_{i}$$

In other words, the random variable $\hat{\eta}_i$ is a linear combination of the random variables $Y|x_i$.

Saying that the observations y_i are independent is the same as saying that the random variables Y_i are independent. In this case, we can conclude:

- If each Ylx_i is normal, then $\hat{\eta}_1$ is also normal.
- If the Ylx_i's are not normal but n is large, then $\hat{\eta}_{l}$ is approximately normal.

This will allow us to do inference on $\hat{\eta}_i$. (Details later.)

2)
$$\sum c_i = \sum \frac{(x_i - \overline{x})}{SXX}$$

 $= \frac{1}{SXX} \sum (x_i - \overline{x}) = 0$ (as seen earlier)
3) $\sum x_i c_i = \sum x_i \frac{(x_i - \overline{x})}{SXX}$
 $= \frac{1}{SXX} \sum x_i (x_i - \overline{x})$
 $= \frac{SXX}{SXX} = 1.$

5

Remark: Recall the somewhat analogous properties for the residuals \hat{e}_i .

$$\begin{array}{l} 4) \ \hat{\eta}_{0} = \overline{y} - \hat{\eta}_{1} \,\overline{x} \\ \\ = \frac{1}{n} \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} c_{i} y_{i} \overline{x} \\ \\ = \sum_{i=1}^{n} (\frac{1}{n} - c_{i} \overline{x}) y_{i} \,, \end{array}$$

also a linear combination of the y_i 's.

Hence:

5) The sum of the coefficients in (4) is

$$\sum_{i=1}^{n} \left(\frac{1}{n} - c_i \overline{x}\right)$$
$$= \sum_{i=1}^{n} \left(\frac{1}{n}\right) - \overline{x} \sum_{i=1}^{n} c_i$$
$$= n\left(\frac{1}{n}\right) - \overline{x} 0$$
$$= 1.$$

Sampling distributions of $\hat{\eta}_0$ and $\hat{\eta}_1$: Consider x_1 , ..., x_n as fixed (i.e., condition on x_1 , ..., x_n).

Model Assumptions: ("The" Simple Linear Regression Model Version 2)

 $1. E(Y|x) = \eta_0 + \eta_1 x$ (linear conditional mean function)

2. (*NEW*) $Var(Y|x) = \sigma^2$ (constant variance)

(Equivalently, $Var(elx) = \sigma^2$)

3. (*NEW*) y_1, \ldots, y_n are independent observations. (independence)

The new assumption means we can consider y_1, \ldots, y_n as coming from n independent random variables Y_1, \ldots, Y_n , where Y_i has the distribution of $Y|x_i$.

Comment: We do *not* assume that the x_i 's are distinct. If, for example, $x_1 = x_2$, then we are assuming that y_1 and y_2 are independent observations from the same conditional distribution Ylx₁. Since Y_1, \ldots, Y_n are random variables, so is $\hat{\eta}_1$ -- but it depends on the choice of x_1, \ldots, x_n , so we can talk about the conditional distribution $\hat{\eta}_1 | x_1, \ldots, x_n$.

Expected value of $\hat{\eta}_{i}$ (as the y_i's vary):

$$E(\hat{\eta}_{1}|x_{1}, \dots, x_{n})$$

$$= E(\sum_{i=1}^{n} c_{i}Y_{i}|x_{1}, \dots, x_{n})$$

$$= \sum c_{i} E(Y_{i}|x_{1}, \dots, x_{n})$$

$$= \sum c_{i} E(Y_{i}|x_{i}) \qquad (since Y_{i} \text{ depends only on } x_{i})$$

$$= \sum c_{i} (\eta_{0} + \eta_{1}x_{i}) \pmod{2} \text{ assumption}$$

$$= \eta_{0}\sum c_{i} + \eta_{1}\sum c_{i} x_{1}$$

$$= \eta_{0}0 + \eta_{1}1 = \eta_{1}$$

<u>Thus</u>: $\hat{\eta}_1$ is an unbiased estimator of η_1 .

Variance of $\hat{\eta}_{l}$ (as the y_i's vary):

$$Var(\hat{\eta}_{i}|x_{1}, ..., x_{n})$$

$$= Var(\sum_{i=1}^{n} c_{i}Y_{i}|x_{1}, ..., x_{n})$$

$$= \sum c_{i}^{2} Var(Y_{i}|x_{1}, ..., x_{n})$$

$$= \sum c_{i}^{2} Var(Y_{i}|x_{i}) \quad (Y_{i} \text{ depends only on } x_{i})$$

$$= \sum c_{i}^{2} \sigma^{2}$$

$$= \sigma^{2} \sum c_{i}^{2}$$

$$= \sigma^{2} \sum (\frac{(x_{i} - \overline{x})}{SXX})^{2} \quad (\text{definition of } c_{i})$$

$$= \frac{\sigma^{2}}{(SXX)^{2}} \sum (x_{i} - \overline{x})^{2}$$

$$= \frac{\sigma^{2}}{SXX} \quad \text{For short: } Var(\hat{\eta}_{i}) = \frac{\sigma^{2}}{SXX}$$

$$\therefore SD(\hat{\eta}_{i}) = \frac{\sigma}{\sqrt{SXX}}$$

9

Comments: Analogy to sampling standard deviation for a mean \overline{y} :

 $SD(estimator) = \frac{population standard deviation}{\sqrt{something}}$

Here, "something" = SXX -- more complicated than "something" = n (for \overline{y}).

Recall: For \overline{y} , as n becomes larger, SD(\overline{y}) gets smaller.

Analogous reasoning for SD($\hat{\eta}_1$):

(Recall: SXX = $\sum (x_i - \overline{x})^2$)

- If the x_i 's are far from \overline{x} (i.e., spread out), SXX is _____, so SD($\hat{\eta}_i$) is _____.
- If the x_i's are close to \overline{x} (i.e., close together), SXX is _____, so SD($\hat{\eta}_1$) is _____.

Thus if you are designing an experiment, choosing the x_i 's to be ______ from their mean will result in a more precise estimate of $\hat{\eta}_i$. (Assuming all the model conditions fit!) *Expected value and variance of* $\hat{\eta}_0$ *:*

Use the formula $\hat{\eta}_0 = \sum_{i=1}^n (\frac{1}{n} - c_i \overline{x}) y_i$ to show (calculations left to the interested student):

• $E(\hat{\eta}_0) = \eta_0$ (So $\hat{\eta}_0$ is an unbiased estimator of η_0 .) • $Var(\hat{\eta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{SXX}\right),$ so $SD(\hat{\eta}_0) = \sigma \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{SXX}}$

Analyzing the variance formula:

- A larger \overline{x} gives a ______ variance for $\hat{\eta}_0$. \rightarrow Does this agree with intuition?
- A larger sample size tends to give a ______ variance for $\hat{\eta}_0$.
- The variance of $\hat{\eta}_0$ is (except when $\overline{x} < 1$) than the variance of $\hat{\eta}_1$. \rightarrow Does this agree with intuition?
- The spread of the x_i 's affects the variance of $\hat{\eta}_0$ in the same way it affects the variance of $\hat{\eta}_1$.

Covariance of $\hat{\eta}_0$ and $\hat{\eta}_1$: Similar calculations (left to the interested student) will show

$$\operatorname{Cov}(\hat{\eta}_0, \hat{\eta}_1) = -\sigma^2 \frac{\overline{x}}{SXX}$$

Thus:

- $\hat{\eta}_0$ and $\hat{\eta}_1$ are not independent (except possibly when _____)
 - \rightarrow Does this agree with intuition?
- The sign of $\text{Cov}(\hat{\eta}_0, \hat{\eta}_1)$ is opposite that of \overline{x} .
 - \rightarrow Does this agree with intuition?

Estimating σ^2 : To use the variance formulas above for inference, we need to estimate σ^2 (= Var(Ylx_i), the same for all i).

Plausible reasoning: *If* we had lots of observations $y_{i_1}, y_{i_2}, \dots, y_{i_m}$ from Ylx_i, then we could use the univariate standard deviation

$$\frac{1}{m-1}\sum_{j=1}^m (y_{i_j} - \overline{y}_i)^2$$

of these m observations to estimate σ^2 . (\overline{y}_i = sample mean of $y_{i_1}, y_{i_2}, \dots, y_{i_m}$, the best estimate of E(Yl x_i) just using $y_{i_1}, y_{i_2}, \dots, y_{i_m}$).

If we don't have lots of y's from one x_i , we might take $\hat{E}(Y|x_i)$ as our best estimate of $E(Y|x_i)$ and try

$$\frac{1}{n-1}\sum_{i=1}^{n} [y_i - \hat{E}(Y \mid x_i)]^2$$
$$= \frac{1}{n-1}\sum_{i=1}^{n} \hat{e}_i^2 = \frac{1}{n-1}RSS.$$

However (just as in the univariate case, we need a denominator n-1 to get an unbiased estimator for σ^2), a lengthy calculation (omitted) shows:

$$E(RSS|x_1, \dots, x_n) = (n-2) \sigma^2$$

(The expected value is over all samples of the y_i 's with the fixed x_i 's.)

Thus we use the estimate

$$\hat{\sigma}^2 = \frac{1}{n-2}RSS$$

to get an unbiased estimator for σ^2 :

$$E(\hat{\sigma}^2|x_1,\ldots,x_n)=\sigma^2.$$

[If you like to think heuristically in terms of losing one degree of freedom for each calculation from data involved in the estimator, this fits: Both $\hat{\eta}_0$ and $\hat{\eta}_1$ need to be calculated from the data to get RSS.] Standard Errors for $\hat{\eta}_0$ and $\hat{\eta}_1$: Using

$$\hat{\sigma} = \sqrt{\frac{RSS}{n-2}}$$

as an estimate of σ in the formulas for SD($\hat{\eta}_0$) and SD($\hat{\eta}_1$) gives the *standard errors*

s.e.
$$(\hat{\eta}_1) = \frac{\hat{\sigma}}{\sqrt{SXX}}$$

and

s.e.(
$$\hat{\eta}_0$$
) = $\hat{\sigma}\sqrt{\frac{1}{n} + \frac{\overline{x}^2}{SXX}}$

as estimates of SD($\hat{\eta}_1$) and SD($\hat{\eta}_0$), respectively.