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STATISTICAL PROPERTIES OF 

LEAST SQUARES ESTIMATORS 

 

Recall: 

 

Assumption:  E(Y|x) = !0 + !1x 

    (linear conditional mean function) 

 

Data:  (x1, y1), (x2, y2), … , (xn, yn) 

 

Least squares estimator: 

! 

ˆ E (Y|x) = 

! 

ˆ " 
0  +

! 

ˆ " 
1x, where 

 

  

! 

ˆ " 
1 = 

! 

SXY

SXX
  

! 

ˆ " 
0 = 

! 

y  -

! 

ˆ " 
1

! 

x  

and 

SXX = " ( xi -

! 

x )2 = " xi( xi -

! 

x ) 

 

SXY = " ( xi -

! 

x ) (yi - 

! 

y ) = " ( xi -

! 

x ) yi 
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Comments:  

 

1. So far we have estimates of the parameters !0 and 

!1, but have no idea how good these estimates are. 

 

2. If our data were the entire population, we could 

also use the same least squares procedure to fit an 

approximate line to the conditional means.  

 

3. If we have a simple random sample from the 

population and also assume e|x (equivalently, Y|x) is 

normal with constant variance, then the least squares 

estimates are the same as the maximum likelihood 

estimates of !0 and !1. 
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Properties of 

! 

ˆ " 
0  and 

! 

ˆ " 
1: 

 

1) 

! 

ˆ " 
1 = 

! 

SXY

SXX
  

= 

! 

(xi " x )yi

i=1

n

#

SXX
  

 

= 

! 

(xi " x )

SXX
yi

i=1

n

#   

 

= 

! 

ciyi
i=1

n

"   

 

where ci = 

! 

(x
i
" x )

SXX
 

  

Thus: If the xi's are fixed (as in the blood lactic acid 

example, or in any example if we condition on x1, x2, 

… , xn), then 

! 

ˆ " 
1 is a linear combination of the yi's. 
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Note: Here we want to think of each yi as an 

observation from a random variable Yi with 

distribution Y|xi. Thus we may say that as a random 

variable (i.e., looking at the sampling distribution of 

! 

ˆ " 
1) 

 

! 

ˆ " 
1= 

! 

c
i
(Y | x

i
)

i=1

n

"  = 

! 

c
i
Y
i

i=1

n

"  

 

In other words, the random variable 

! 

ˆ " 
1 is a linear 

combination of the random variables Y|xi.   

 

Saying that the observations yi are independent is the 

same as saying that the random variables Yi are 

independent. In this case, we can conclude:  

 

• If each Y|xi is normal, then 

! 

ˆ " 
1 is also normal. 

 

• If the Y|xi's are not normal but n is large, then 

! 

ˆ " 
1 is 

approximately normal.  

 

This will allow us to do inference on 

! 

ˆ " 
1. (Details 

later.) 
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2) " ci =  "

! 

(x
i
" x )

SXX
  

 

= 

! 

1

SXX
(x

i
" x )#   = 0   (as seen earlier) 

 

3) " xi ci = " xi 

! 

(x
i
" x )

SXX
  

 

= 

! 

1

SXX
x

i
(x

i
" x )#   

 

= 

! 

SXX

SXX
 = 1. 

 

Remark: Recall the somewhat analogous properties 

for the residuals 

! 

ˆ e 
i .  
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4) 

! 

ˆ " 
0 = 

! 

y  -

! 

ˆ " 
1

! 

x   

 

= 

! 

1

n
yi

i=1

n

" - 

! 

ciyi

i=1

n

" x   

 

= 

! 

(
1

n
" cix )yi

i=1

n

# ,  

 

also a linear combination of the yi's.   

 

Hence:  

 

 

 

 

 

5) The sum of the coefficients in (4) is  

 

! 

(
1

n
" c

i
x )

i=1

n

#   

= 

! 

(
1

n
) " x c

i

i=1

n

#
i=1

n

#   

 

= 

! 

n(
1

n
) " x 0    

= 1. 
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Sampling distributions of 

! 

ˆ " 
0  and 

! 

ˆ " 
1: Consider x1, 

… , xn as fixed (i.e., condition on x1, … , xn). 

 

Model Assumptions: 

 ("The" Simple Linear Regression Model Version 2) 

 

1. E(Y|x) = !0 + !1x  

    (linear conditional mean function) 

 

2. (NEW)  Var(Y|x) = #2  (constant variance) 

  

  (Equivalently, Var(e|x) = #2)    

     

3. (NEW)   y1, … , yn are independent observations. 

       (independence) 

 

The new assumption means we can consider  

y1, … , yn as coming from n independent random 

variables Y1, … , Yn, where Yi has the distribution 

of Y|xi. 

 

Comment: We do not assume that the xi's are distinct. 

If, for example, x1 = x2, then we are assuming that y1 

and y2 are independent observations from the same 

conditional distribution Y|x1. 
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Since Y1, … , Yn are random variables, so is 

! 

ˆ " 
1 -- but 

it depends on the choice of x1, … , xn, so we can talk 

about the conditional distribution 

! 

ˆ " 
1|x1, … , xn.  

 

Expected value of 

! 

ˆ " 
1 (as the yi's vary): 

 

E(

! 

ˆ " 
1|x1, … , xn)  

= E(

! 

c
i
Y
i

i=1

n

" |x1, … , xn) 

 

  = "ci E(Yi|x1, … , xn) 

    

= "ci E(Yi|xi)     

   (since Yi depends only on xi) 

    

= "ci (!0 + !1xi) (model assumption) 

    

= !0"ci + !1"ci xI 

 

  = !00 + !11 = !1 

 

Thus: 

! 

ˆ " 
1 is an unbiased estimator of !1. 
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Variance of 

! 

ˆ " 
1 (as the yi's vary): 

 

Var(

! 

ˆ " 
1|x1, … , xn)  

 

= Var(

! 

c
i
Y
i

i=1

n

" |x1, … , xn) 

 

  = "ci
2 Var(Yi|x1, … , xn) 

   

= "ci
2 Var(Yi|xi)     (Yi depends only on xi) 

   

= "ci
2#2 

    

= #2"ci
2 

   

  = #2"

! 

(x
i
" x )

SXX

# 

$ 
% 

& 

' 
( 
2

  (definition of ci) 

    

= 

! 

" 2

SXX( )
2

(x
i
# x )

2$  

    

= 

! 

" 2

SXX
  For short: Var(

! 

ˆ " 
1) = 

! 

" 2

SXX
 

 

  $ SD(

! 

ˆ " 
1) =

! 

"

SXX
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Comments:  Analogy to sampling standard deviation 

for a mean 

! 

y : 

 

 SD(estimator) = 

! 

population standard deviation

something  

 

Here, "something" = SXX -- more complicated than 

"something" = n (for 

! 

y ).  

 

Recall: For 

! 

y , as n becomes larger, SD(

! 

y ) gets 

smaller.  

 

Analogous reasoning for SD(

! 

ˆ " 
1):  

 

(Recall: SXX = " ( xi -

! 

x )2) 

 

• If the xi's are far from 

! 

x (i.e., spread out), SXX is 

__________, so SD(

! 

ˆ " 
1) is __________. 

 

• If the xi's are close to 

! 

x  (i.e., close together), SXX 

is __________, so SD(

! 

ˆ " 
1) is __________. 

 

Thus if you are designing an experiment, choosing 

the xi's to be _________ from their mean will result 

in a more precise estimate of 

! 

ˆ " 
1. (Assuming all the 

model conditions fit!) 
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Expected value and variance of 

! 

ˆ " 
0 : 

 

Use the formula 

! 

ˆ " 
0 = 

! 

(
1

n
" cix )yi

i=1

n

#  to show 

(calculations left to the interested student): 

 

• E(

! 

ˆ " 
0 ) = !0   

(So 

! 

ˆ " 
0  is an unbiased estimator of !0.) 

• Var (

! 

ˆ " 
0 ) = 

! 

" 2 1

n
+

x 
2

SXX

# 

$ 
% % 

& 

' 
( ( ,  

so SD(

! 

ˆ " 
0 ) = 

! 

"
1

n
+

x 
2

SXX
 

 

Analyzing the variance formula: 

 

• A larger 

! 

x  gives a ____________ variance for 

! 

ˆ " 
0 . 

% Does this agree with intuition? 

 

• A larger sample size tends to give a ____________ 

variance for 

! 

ˆ " 
0 . 

 

• The variance of 

! 

ˆ " 
0  is (except when  

! 

x  < 1) 

_______________ than the variance of 

! 

ˆ " 
1. 

% Does this agree with intuition? 

 

• The spread of the xi's affects the variance of 

! 

ˆ " 
0  in 

the same way it affects the variance of 

! 

ˆ " 
1. 

 12 

Covariance of 

! 

ˆ " 
0  and

! 

ˆ " 
1: Similar calculations (left to 

the interested student) will show 

 

 Cov(

! 

ˆ " 
0 ,

! 

ˆ " 
1) = 

! 

"#
2 x 

SXX
 

 

Thus: 

 

• 

! 

ˆ " 
0  and

! 

ˆ " 
1 are not independent (except possibly 

when ________) 

 

% Does this agree with intuition? 

 

• The sign of Cov(

! 

ˆ " 
0 ,

! 

ˆ " 
1) is opposite that of 

! 

x . 

 

% Does this agree with intuition? 
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Estimating "2: To use the variance formulas above 

for inference, we need to estimate #2 (= Var(Y|xi), the 

same for all i). 

 

Plausible reasoning: If we had lots of observations 

! 

yi1 , yi2 , ...,yim  from Y|xi, then we could use the 

univariate standard deviation  

 

! 

1

m "1
(yi j

" y i
j=1

m

# )
2

  

 

of these m observations to estimate #2. (

! 

y i  = sample 

mean of 

! 

yi1 , yi2 , ...,yim , the best estimate of E(Y| xi) 

just using 

! 

yi1 , yi2 , ...,yim  ). 

 

 If we don't have lots of y's from one xi, we might 

take 

! 

ˆ E (Y | x
i
) as our best estimate of E(Y|xi) and try 

 

! 

1

n "1
[yi "

ˆ E (Y | xi

i=1

n

# )]
2

 

   = 

! 

1

n "1
ˆ e 

i

2

i=1

n

#  = 

! 

1

n "1
RSS . 
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However (just as in the univariate case, we need a 

denominator n-1 to get an unbiased estimator for #2), 

a lengthy calculation (omitted) shows:  

 

  E(RSS| x1, … , xn)  = (n-2) #2  

  

(The expected value is over all samples of the yi's 

with the fixed xi's.) 

 

Thus we use the estimate 

 

   

! 

ˆ " 
2

 = 

! 

1

n " 2
RSS  

 

to get an unbiased estimator for #2: 

 

  E(

! 

ˆ " 
2

|x1, … , xn) = #2. 

 

[If you like to think heuristically in terms of losing 

one degree of freedom for each calculation from data 

involved in the estimator, this fits: Both 

! 

ˆ " 
0  and

! 

ˆ " 
1 

need to be calculated from the data to get RSS.] 
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Standard Errors for 

! 

ˆ " 
0  and

! 

ˆ " 
1: Using  

 

! 

ˆ "  = 

! 

RSS

n " 2
 

 

as an estimate of # in the formulas for SD(

! 

ˆ " 
0 ) and 

SD(

! 

ˆ " 
1) gives the standard errors 

 

  s.e. (

! 

ˆ " 
1) = 

! 

ˆ " 

SXX
 

and 

  s.e.( 

! 

ˆ " 
0 ) = 

! 

ˆ " 
1

n
+

x 
2

SXX
 

 

as estimates of SD(

! 

ˆ " 
1) and SD(

! 

ˆ " 
0 ), respectively. 

 

 
 

 


