SUBMODELS (NESTED MODELS) AND ANALYSIS OF VARIANCE OF REGRESSION MODELS

We will assume we have data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ and make the usual simple linear model assumptions (linear mean function; constant conditional variance) independence and normality).

Our model has 3 parameters:

$$\begin{split} E(Y|x) &= \eta_0 + \eta_1 x \text{ (Two parameters: } \eta_0 \text{ and } \eta_1) \\ Var(Y|x) &= \sigma^2 \text{ (One parameter: } \sigma) \end{split}$$

We will call this the *full model*. Many hypothesis tests on coefficients can be reformulated as tests of the full model against a *submodel* – that is, a special case of the full model obtained by specifying certain of the parameters or certain relationships between parameters.

Examples: a. NH: $\eta_1 = 1$ AH: $\eta_1 \neq 1$

What model does NH correspond to? How many parameters does it have? AH corresponds to the full model (with three parameters, including η_1).

b. NH: $\eta_1 = 0$ AH: $\eta_1 \neq 0$

AH corresponds to the full model. What submodel does NH correspond to? How many parameters does it have?

c. NH: $\eta_0 = 0$ AH: $\eta_0 \neq 0$

AH corresponds to the full model. What submodel does NH correspond to? How many parameters does it have?

Any specification of or relation among some of the parameters would give a submodel – and a conceivable hypothesis test.

Examples: For the submodel given, what is the null hypothesis of the corresponding hypothesis test?

- d.
 $$\begin{split} E(Y|x) &= 2 + \eta_1 x \\ Var(Y|x) &= \sigma^2 \end{split}$$
- e. $E(Y|x) = \eta_0 + \eta_0 x$

$$Var(Y|x) = \sigma^2$$

We have discussed how to "fit" the full model from data using least squares. We can also fit a submodel by least squares.

Example 1: To fit the submodel $E(Y|x) = 2 + \eta_1 x$ $Var(Y|x) = \sigma^2$, consider lines $y = 2 + h_1 x$ and minimize $RSS(h_1) = \sum d_i^2 = \sum [y_i - (2 + h_1 x_i)]^2$ to get $\hat{\eta}_1$. [Draw a picture.] Note: For this example, $y_i - (2 + h_1 x_i) = (y_i - 2) - h_1 x_i$,

Note: For this example, $y_i - (2 + h_1x_i) = (y_i - 2) - h_1x_i$, so fitting this model is equivalent to fitting the model

$$E(Y|x) = \eta_1 x$$

Var(Y|x) = σ^2

to the transformed data $(x_1, y_1 - 2), (x_2, y_2 - 2), \dots, (x_n, y_n - 2)$

Example 2: For the submodel $E(Y|x) = \eta_0$ $Var(Y|x) = \sigma^2$, we minimize $RSS(h_0) = \sum d_i^2 = \sum (y_i - h_0)^2$ [Draw a picture.] a. Carry out details

b. Result: $h_0 = \overline{y}$ -- the same as the univariate estimate.

c. Show that this is also the same as setting $\hat{\eta}_i = 0$ in the least squares fit for the full model.

Caution: The result is not always this nice, as the exercise below shows.

Exercise: Try finding the least squares fit for the submodel $E(Y|x) = \eta_1 x$ ("Regression through the origin")

$$Var(Y|x) = \sigma^2$$

You should get a different formula for $\hat{\eta}_i$ from that obtained by setting $\hat{\eta}_0 = 0$ in the formula for the least squares fit for the full model.

Generalizing: If we fit a submodel by Least Squares, we can define the residual sum of squares for the *submodel*:

$$RSS_{sub} = \sum (y_i - \hat{y}_{i,sub})^2 = \sum \hat{e}_{i,sub}^2$$

where $\hat{y}_{i,sub} = \hat{E}_{sub}(Y|x)$ is the fitted value for the submodel and $\hat{e}_{i,sub} = y_i - \hat{y}_{i,sub}$

Example: For the submodel in Example 2, $\hat{y}_{i,sub} = \overline{y}$ for each i, so

 $RSS_{sub} = \sum (y_i - \overline{y})^2 = SYY$

General Properties: (Stated without proof; true for multiple regression as well as simple regression)

- RSS_{sub} is a multiple of a χ^2 distribution, with
- degrees of freedom $df_{sub} = n (\# \text{ of coefficients estimated})$, and
- $\hat{\sigma}_{sub}^{2} = \frac{RSS_{sub}}{df_{sub}}$ is an estimate of σ^{2} for the submodel.

This will allow us to do hypothesis tests comparing a submodel with the full model.

Another Perspective:

We want a way to help decide whether the full model is significantly better than the full model. RSS_{sub} - RSS_{full} can be considered a measure of how much better the full model is than the submodel. (Why is this difference always ≥ 0 ?). But RSS_{sub} - RSS_{full} depends on the scale of the data, so $\frac{RSS_{sub} - RSS_{full}}{RSS_{full}}$ is a better measure.

Example (to help build intuition): The submodel $E(Y|x) = \eta_0$ $Var(Y|x) = \sigma^2$

Testing this model against the full model is equivalent to performing a hypothesis test with

NH:
$$\eta_1 = 0$$

AH: $\eta_1 \neq 0$.

This hypothesis test uses the t-statistic

$$t = \frac{\hat{\eta}_1}{se.(\hat{\eta}_1)} = \frac{SXY/SXX}{\hat{\sigma}/\sqrt{SXX}} \sim t(n-2),$$

where here $\hat{\sigma} = \hat{\sigma}_{full}$ is the estimate of σ for the *full* model. Note that

$$t^{2} = \frac{\frac{(SXY)^{2}}{(SXX)^{2}}}{\frac{\hat{\sigma}^{2}}{SXX}} = \frac{(SXY)^{2}}{\hat{\sigma}^{2}(SXX)}$$

Recall:

$$RSS_{full} = SYY - \frac{(SXY)^2}{SXX}$$

RSS_{sub} = SYY (in this particular example)

Thus

SO

$$RSS_{sub} - RSS_{full} = \frac{(SXY)^2}{SXX}.$$

$$t^{2} = \frac{RSS_{sub} - RSS_{full}}{\hat{\sigma}^{2}} = \frac{RSS_{sub} - RSS_{full}}{RSS_{full}/(n-2)}$$
$$= \frac{RSS_{sub} - RSS_{full}}{RSS_{full}} \div (n-2),$$

which is just a constant times our earlier measure $\frac{RSS_{sub} - RSS_{full}}{RSS_{full}}$ of how much better the full model is than the submodel.

F Distributions

Recall: A t(k) random variable has the distribution of a random variable of the form

where

Thus

Also,

 $Z^2 \sim \,$

 $t^2 \sim$

Definition: An *F*-distribution $F(v_1, v_2)$ with v_1 degrees of freedom in the numerator and v_2 degrees of freedom in the denominator is the distribution of a random variable of the form

$$\frac{W/v_1}{U/v_2}$$
 where $W \sim \chi^2(v_1)$
 $U \sim \chi^2(v_2)$
and U and W are independent.

Thus:

 $t(k)^2 \sim F(1, k);$

i.e., the square of a t(k) random variable is an F(1,k) random variable – so any two-sided t-test could also be formulated as an F-test.

In particular, the hypothesis test with hypotheses

NH:
$$\eta_1 = 0$$

AH: $\eta_1 \neq 0$

could be done using the F-statistic t² instead of the t-statistic .

Recall that in this example,

$$t^{2} = \frac{RSS_{sub} - RSS_{full}}{RSS_{full}} \div (n-2),$$

which we have seen *does* make sense as a measure of whether the full model (corresponding to AH) is better than the submodel (corresponding to NH).

Example: Forbes data.

Still another look at the F-statistic:

$$F = \frac{RSS_{sub} - RSS_{full}}{RSS_{full} / (n-2)}$$
$$= \frac{\left(RSS_{sub} - RSS_{full}\right) / \left(df_{sub} - df_{full}\right)}{RSS_{full} / df_{full}},$$

since $df_{sub} - df_{full} = (n - 1) - (n - 2) = 1$.

i.e., F is the ratio of (the residual sum of squares for the submodel compared with the full model) and (the residual sum of squares for the full model) - - but with each divided by its degrees of freedom to "weight" them appropriately to get a tractable distribution. This is also just a constant times $\frac{RSS_{sub} - RSS_{full}}{RSS_{full}}$, which is a reasonable measure of how much

better the full model is than the submodel in fitting the data.

This illustrates the general case: Whenever we have a submodel (in multiple linear regression as well as simple linear regression),

a. RSS_{sub} (hence $\hat{\sigma}^2_{sub}$) will be a constant times a χ^2 distribution, with degrees of freedom df_{sub}, which we then also refer to as the degrees of freedom of RSS_{sub} and of $\hat{\sigma}^2_{sub}$.

b.
$$\frac{\left(RSS_{sub} - RSS_{full}\right) / \left(df_{sub} - df_{full}\right)}{\hat{\sigma}_{full}^{2}} = \frac{\left(RSS_{sub} - RSS_{full}\right) / \left(df_{sub} - df_{full}\right)}{RSS_{full} / df_{full}}$$

 $\sim F(df_{sub}$ - df_{full} , $df_{full}).$

Rewriting the F-statistic,

$$\frac{\left(RSS_{sub} - RSS_{full}\right) / \left(df_{sub} - df_{full}\right)}{RSS_{full} / df_{full}} = \left(\frac{RSS_{sub} - RSS_{full}}{RSS_{full}}\right) \left(\frac{df_{full}}{df_{fsub} - df_{full}}\right)$$

is just a constant multiple of $\frac{RSS_{sub} - RSS_{full}}{RSS_{full}}$, which is a reasonable measure of how much better the full model is than the submodel in fitting the data.

Thus we can use an F statistic for the hypothesis test NH: Submodel AH: Full model