SUBMODELS (NESTED MODELS) AND ANALYSIS OF VARIANCE OF REGRESSION MODELS

1

Data: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

Assumptions:

- Linear mean function
- Constant conditional variance
- Independence of observations
- Normality of conditional distributions

Our model has 3 parameters:

 $E(Y|x) = \eta_0 + \eta_1 x$ (Two parameters: η_0 and η_1) Var(Y|x) = σ^2 (One parameter: σ)

We will call this the *full model*.

Many hypothesis tests on coefficients can be reformulated as test of the full model against a *submodel* : a special case of the full model obtained by specifying certain of the parameters or certain relationships between parameters. Examples:

a. NH: $\eta_1 = 1$ AH: $\eta_1 \neq 1$

What submodel does NH correspond to?

How many parameters does it have?

AH corresponds to the full model (with three parameters, including η_1).

b. NH: $\eta_1 = 0$ AH: $\eta_1 \neq 0$

AH <-> full model.

NH <-> ?

Number of parameters?

c. NH: $\eta_0 = 0$ AH: $\eta_0 \neq 0$

AH <-> full model.

NH <->?

Number of parameters?

We can go the other way:

Examples: For the submodel given, what is the null hypothesis of the corresponding hypothesis test?

3

 $\begin{array}{ll} d. \quad E(Y|x)=2+\eta_1 x\\ & Var(Y|x)=\sigma^2 \end{array}$

e. $E(Y|x) = \eta_0 + \eta_0 x$ $Var(Y|x) = \sigma^2$ As with the full model, we can "fit" a submodel using least squares:

Example 1: Submodel:

 $E(Y|x) = 2 + \eta_1 x$ $Var(Y|x) = \sigma^2,$

Consider lines $y = 2 + h_1 x$

[picture!]

$$\label{eq:minimize} \begin{split} & \text{Minimize} \\ & \text{RSS}(h_1) = \sum d_i{}^2 = \sum \left[y_i - (2 + h_1 x_i) \right]^2 \end{split}$$

to get $\hat{\eta}_{1}$.

Note: For this example, $y_i - (2 + h_1x_I) = (y_i - 2) - h_1x_i$, so fitting this model is equivalent to fitting the model

 $E(Y|x) = \eta_1 x$ Var(Y|x) = σ^2

to the transformed data $(x_1,\,y_1\,{\text{-}}\,2),\,(x_2,\,y_2\,{\text{-}}\,2),\,\ldots\,,\,(x_n,\,y_n\,{\text{-}}\,2)$

Example 2: Submodel

 $E(Y|x) = \eta_0$

 $Var(Y|x) = \sigma^2$

Minimize

 $RSS(h_0) = \sum d_i^2 = \sum (y_i - h_0)^2$

[picture!]

5

Details:

Result: $h_0 = \overline{y}$ -- the same as the univariate estimate.

Note: This is also the same as setting $\hat{\eta}_1 = 0$ in the least squares fit for the full model.

Caution: The result is *not* always this nice, as the exercise below shows.

Exercise: Try finding the least squares fit for the submodel

 $E(Y|x) = \eta_1 x$

 $Var(Y|x) = \sigma^2$

("Regression through the origin")

You should get a *different* formula for $\hat{\eta}_1$ from that obtained by setting $\hat{\eta}_0 = 0$ in the formula for the least squares fit for the full model.

8

Generalizing: If we fit a submodel by Least Squares, we can define the residual sum of squares for the submodel:

$$RSS_{sub} = \sum (y_i - \hat{y}_{i,sub})^2 = \sum \hat{e}_{i,sub}^2$$

where

$$\hat{y}_{i,sub} = \hat{E}_{sub}(Y|x)$$

is the fitted value for the submodel and

$$\hat{e}_{i,sub} = \mathbf{y}_i - \hat{y}_{i,sub}$$

Example: For the submodel

 $E(Y|x) = \eta_0$ Var(Y|x) = σ^2 ,

 $\hat{y}_{i,sub} = \overline{y}$ for each i, so

$$RSS_{sub} = \sum (y_i - \overline{y})^2 = SYY = (n-1) s_Y,$$

where s_{Y} is the sample standard deviation of Y.

General Properties: (Stated without proof; true for multiple regression as well as simple regression)

- i. RSS_{sub} is a multiple of a χ^2 distribution, with
- ii. degrees of freedom $df_{sub} = n (\# of coefficients estimated)$, and

iii. $\hat{\sigma}_{sub}^{2} = \frac{RSS_{sub}}{df_{sub}}$ is an estimate of σ^{2} for the submodel.

This will allow us to do hypothesis tests comparing a submodel with the full model.

Another Perspective:

We want a way to help decide whether the full model is significantly better than the full model.

 RSS_{sub} - RSS_{full} can be considered a measure of how much better the full model is than the submodel.

(Why is this difference always ≥ 0 ?).

But RSS_{sub} - RSS_{full} depends on the scale of the data,

so $\frac{RSS_{sub} - RSS_{full}}{RSS_{full}}$ is a better measure.

Example (to help build intuition): The submodel

 $E(Y|x) = \eta_0$ Var(Y|x) = σ^2

Testing this model against the full model is equivalent to performing a hypothesis test with

NH: $\eta_1 = 0$ AH: $\eta_1 \neq 0$. This hypothesis test uses the t-statistic

$$t = \frac{\hat{\eta}_1}{se.(\hat{\eta}_1)} = \frac{\frac{SXY}{SXX}}{\hat{\sigma}} \sim t(n-2),$$

where here $\hat{\sigma} = \hat{\sigma}_{full}$ is the estimate of σ for the *full* model.

Note that

$$t^{2} = \frac{\frac{(SXY)^{2}}{(SXX)^{2}}}{\hat{\sigma}^{2}_{SXX}} = \frac{\frac{(SXY)^{2}}{\hat{\sigma}^{2}(SXX)}}{\hat{\sigma}^{2}(SXX)}$$

Recall:

$$RSS_{full} = SYY - \frac{(SXY)^2}{SXX}$$

 $RSS_{sub} = SYY$ (in this particular example)

Thus

$$RSS_{sub} - RSS_{full} = \frac{(SXY)^2}{SXX}.$$

SO

$$t^{2} = \frac{RSS_{sub} - RSS_{full}}{\hat{\sigma}^{2}}$$
$$= \frac{RSS_{sub} - RSS_{full}}{RSS_{full}/(n-2)}$$
$$\frac{RSS_{sub} - RSS_{full}}{RSS_{sub} - RSS_{full}}$$

 $= \frac{RSS_{sub} RSS_{full}}{RSS_{full}} \div (n-2),$

which is just a constant times our earlier measure

$$\frac{RSS_{sub} - RSS_{full}}{RSS_{full}}$$
 of how much better the full model is

than the submodel.

F Distributions

Recall: A t(k) random variable has the distribution of a random variable of the form

where

Thus $t(k)^2 \sim$

Also,

 $Z^2 \sim$

Definition: An *F*-distribution $F(v_1, v_2)$ with v_1 degrees of freedom in the numerator and v_2 degrees of freedom in the denominator is the distribution of a random variable of the form

$$\frac{W/v_1}{U/v_2}$$
 where $W \sim \chi^2(v_1)$
 $U \sim \chi^2(v_2)$
and U and W are independent.

Thus:

 $t(k)^2 \sim F(1, k);$

i.e., the square of a t(k) random variable is an F(1,k) random variable – so any two-sided t-test could also be formulated as an F-test.

In particular, the hypothesis test with hypotheses

$$NH: \eta_1 = 0$$

AH: $\eta_1 \neq 0$

could be done using the F-statistic t^2 instead of the t-statistic .

Recall that in this example,

$$t^{2} = \frac{RSS_{sub} - RSS_{full}}{RSS_{full}} \div (n-2),$$

which we have seen *does* make sense as a measure of whether the full model (corresponding to AH) is better than the submodel (corresponding to NH).

Example: Forbes data.

Still another look at the F-statistic t²:

$$F = \frac{RSS_{sub} - RSS_{full}}{RSS_{full}/(n-2)}$$
$$= \frac{(RSS_{sub} - RSS_{full})/(df_{sub} - df_{full})}{RSS_{full}/df_{full}}$$

since
$$df_{sub} - df_{full} = (n - 1) - (n - 2) = 1$$

i.e., F is the ratio of:

Numerator:

the difference between the residual sum of squares for the submodel and the RSS for the full model

Denominator:

the residual sum of squares for the full model

But:

with each divided by its degrees of freedom to "weight" them appropriately to get a tractable distribution. This is also just a constant times $\frac{RSS_{sub} - RSS_{full}}{RSS_{full}}$, which is a reasonable measure of how much better the full model is than the submodel in fitting the data.

This generalizes: Whenever we have a submodel (in multiple linear regression as well as simple linear regression),

a. RSS_{sub} (hence $\hat{\sigma}^2_{sub}$) will be a constant times a χ^2 distribution, with degrees of freedom df_{sub}, which we then also refer to as the degrees of freedom of RSS_{sub} and of $\hat{\sigma}^2_{sub}$.

b.
$$\frac{\left(RSS_{sub} - RSS_{fill}\right) / \left(df_{sub} - df_{fill}\right)}{\hat{\sigma}_{fill}^{2}}$$
$$= \frac{\left(RSS_{sub} - RSS_{fill}\right) / \left(df_{sub} - df_{fill}\right)}{RSS_{fill} / df_{fill}}$$

~ $F(df_{sub} - df_{full}, df_{full})$.

Rewriting the F-statistic,

$$\frac{\left(RSS_{sub} - RSS_{full}\right) / \left(df_{sub} - df_{full}\right)}{RSS_{full} / df_{full}}$$
$$= \left(\frac{RSS_{sub} - RSS_{full}}{RSS_{full}}\right) \left(\frac{df_{full}}{df_{fsub} - df_{full}}\right)$$

is just a constant multiple of $\frac{RSS_{sub} - RSS_{full}}{RSS_{full}}$, which is a reasonable measure of how much better the full model is than the submodel in fitting the data.

Thus we can use this F statistic for the hypothesis test

NH: Submodel AH: Full model