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TESTING FULL MODELS 

AGAINST SUBMODELS 

(ref: Sections 11.2 – 11.2) 

 

As in simple linear regression, we may want to test 

submodels against full models. 

 

Example: Haystacks data. The model 

 

 E(Vol|C, Over) = !0 + !1C
3
 + !2Over

3
 

 

is a submodel of the larger cubic model 

 

 E(Vol|C, Over) = !0 + !1C
3
 + !2Over

3
  

   + !3C
2
Over + !4COver

2
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More generally: We may wish to test a submodel 

 

 E(Y|x) = !0 + !1u1 + … + !lul 

 

against a  full model 

 

 E(Y|x) = !0 + !1u1 + … + !k-1uk-1  (l ! k-1). 

 

Corresponding hypothesis test on coefficients: 

 

  NH: 

  AH: 

 

Note:  

 

• By re-ordering terms, this covers any situation 

where the null hypothesis is of the form “a 

certain set of coefficients is 0”.  

 

• Other types of tests of submodels can be 

handled, as in simple linear regression; we’ll just 

discuss tests of this type. 
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Assuming:  

 

• All four regression assumptions hold for the 

model with all terms and 

 

• All four regression assumptions hold with 

the desired terms omitted, 

 

then the test statistic is the same as in simple linear 

regression: 

 

 F = 

! 

RSSsub " RSSfull( ) dfsub " df full( )
ˆ # full

2  

   

  = 

! 

RSSsub " RSSfull( ) dfsub " df full( )
RSSfull df full

 

   

  = 

! 

RSSsub " RSSfull

RSS full
•

df full

dfsub " df full
   

 

  ~  F(dfsub - dffull , dffull). 
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Recall: It is possible that the full model with all terms 

is linear, but when some terms are omitted, the 

conditional mean function might not be linear. 

 

Example: True full model  

 

 E(Y|x1, x2) = 1 + 2x1 + 3x2. 

 

Calculations similar to ones done earlier show 

 

 E(Y|x1) = E(E(Y| x1, x2)|x1) 

 

   = E(1 + 2x1 + 3x2|x1) 

 

   = 1 + 2x1 + 3E(x2|x1) 

 

If, say, E(x2|x1) = log(x1), then 

 

 E(Y|x1)  = 1 + 2x1 + 3 log(x1), 

 

which is not linear in x1. 

 

Consequence: You cannot be confident of the results 

of an F-test if you have no reason to believe that you 

will still have a linear mean function after dropping 

the terms in question. Be cautious! 
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Note: It is also possible to invalidate the constant 

variance assumption by dropping terms; see Section 

11.1.2, p. 265. 

 

Unfortunately, many people don’t realize that the 

model assumptions may be violated when dropping 

terms, so the F test is often applied when the 

conditions for it to be valid do not apply.  

 

Moral: Be cautious when reading the literature. 

 

 

However: Recall that if U1, U2, … , Uk-1, Y are 

multivariate normal, then every marginal and 

conditional distribution is also multivariate normal, 

so the above problems will not occur in this case.  
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Moreover: The F-tests for submodels are fairly robust 

to departures from the linearity assumptions under 

either of the following conditions: 

 

(i) The terms are “linearly related”, i.e., 

E(Ui|Uj) is a linear function of Uj for each 

pair i,j (and the other assumptions hold). 

       

 or 

 

(ii) U1, U2, … , Uk-1, Y are close to multivariate 

normal (and the other assumptions hold). 

 

Practical Consequence: If you plan to consider 

submodels (common when dealing with many terms), 

then you should transform variables before using 

least squares and testing submodels. Try to get: 

• Multivariate normality 

• Or close to multivariate normality 

• Or at least terms linearly related as much as 

possible. 

 

Arc software can attempt to do this! 

 

Comment: “Linearly related” includes the case of 

independent variables – e.g., if x1 and x2 are 

independent, then E(x1|x2) = E(x1) = µ1 is a linear 

function of x1.  


