CAUTIONS IN USING
FREQUENTIST STATISTICS



Outline

If it involves statistical inference, it involves
uncertainty.

Watch out for conditional probabilities.
Pay attention to model assumptions.

Pay attention to consequences and
complications stemming from Type | error.



|. If it involves statistical inference, it
involves uncertainty.

Statistical inference: Drawing an inference about
a population based on a sample from that
population. This includes:

* Performing hypothesis tests
* Forming confidence intervals
* Bayesian inference

* Frequentist inference



“Humans may crave absolute certainty; they

may aspire to it; they may pretend ... to have
attained it. But the history of science ... teaches

that the most we can hope for is successive
improvement in our understanding, learning

from our mistakes, ... but with the proviso that
absolute certainty will always elude us.”

Carl Sagan, The Demon-Haunted World:
Science as a Candle in the Dark (1995), p. 28



“One of our ongoing themes when discussing
scientific ethics is the central role of statistics in
recognizing and communicating uncertainty.
Unfortunately, statistics—and the scientific process
more generally—often seems to be used more as a
way of laundering uncertainty, processing data until
researchers and consumers of research can feel safe
acting as if various scientific hypotheses are
unquestionably true.”

Statisticians Andrew Gelman and Eric Loden,
“The AAA Tranche of Subprime Science,”
the Ethics and Statistics column in

Chance Magazine 27.1, 2014, 51-56



Many words indicate uncertainty:
Examples:
Random,
Variability
Variation
Noise
Probably
Possibly
Plausibly
Likely

Don’t ignore them; take them seriously and as reminders
not to slip into a feeling of certainty.



General advice:

1. When reading research that involves
statistics, actively look for sources of
uncertainty. Common sources include:

* Natural variation within populations

— lllustration: The standard deviation and the
interquartile range are two possible measure of
variation within a population

* Uncertainty from sampling
e Uncertainty from measurement
e Uncertainty from models used (more shortly)



2. When planning research:

a. Actively look for sources of uncertainty
* See previous slide

b. Wherever possible, try to reduce or take into
account uncertainty. Examples:

» Restrict population to reduce variability
* Try to get good samples

— Larger may be better
— Sample as required by method of analysis (more later)

* Use better measures when possible

* Try to use models that fit the the situation being
studied.
— E.g., multilevel models for a multilevel situation



Whenever possible, try to quantify degree of
uncertainty (But be aware that this attempt will
result in uncertainty estimates that themselves
involve uncertainty). Examples:

* The standard deviation and the interquartile range are
both measures of variation within a population.

* The standard error of the mean is a measure of the
uncertainty (from sampling) of an estimate (based on
the sample) of the mean of a population.

* Confidence intervals roughly quantify degree of
uncertainty of parameters.



Il. Watch out for conditional
probabilities

* Most probabilities in real life (including science) are

conditional.
— Example: The probability of someone having a heart attack

if they:
* Are female
* Areover 75
* Have high cholesterol
* Or combinations of these

* Notation: P(event|condition)

* Ignoring the condition(s) amounts to unwarranted
extrapolation.

* Think about conditions as we proceed!



lll. Pay attention to model
assumptions for inference

Most commonly-used (“parametric”),
frequentist hypothesis tests involve the

following four elements:
1. Model assumptions
2. Null and alternative hypotheses
3. Atest statistic
4. A mathematical theorem

(Confidence interval procedures involve #1 and
#4, plus something being estimated).



Elaboration:

A test statistic is something that:
— |Is calculated by a rule from a sample.

— Has the property that, if the null hypothesis is true,
extreme values of the test statistic are rare, and
hence cast doubt on the null hypothesis.

The mathematical theorem says,

"If the model assumptions and the null hypothesis are
both true, then the distribution of the test statistic has a
certain form.” (The form depends on the test)



Further elaboration:

“The distribution of the test statistic” is called the sampling
distribution.

— This is the distribution of the test statistic as samples vary.
— =2 Online Illustration ...
The model assumptions specify
— allowable samples
— the allowable type of random variable
— possibly other conditions.

The exact details of these four elements will depend on the
particular hypothesis test.

In particular, the form of the sampling distribution will
depend on the hypothesis test.

Different tests may involve the same distribution.



Example: One-sided t-Test for the mean

The above elements for this test are:

1. Model assumptions:

— We're dealing with a normally distributed random variable
Y.

— Samples are simple random samples from some
population.

— Null hypothesis: “The population mean u of the random
variable Y is a certain value p,.”

— Alternative hypothesis: "The mean u of the random
variable Y is greater than p,." (A one-sided alternative.)



3. Test statistic: For a simple random sample y,,

Yo, ..., ¥, Of size n, we define the t-statistic as
t — y _MO

s

Jn

where Y is the sample mean and s is the sample
standard deviation




4. The mathematical theorem associated with
this inference procedure states:

If the model assumptions are true (i.e., if Y is normal
and all samples considered are simple random
samples) and if the null hypothesis is true (i.e., if the

population mean of y is indeed p,), and if we only
consider samples of the same size n, then the

sampling distribution of the t-statistic is the t-
distribution with n degrees of freedom.



The reasoning behind the hypothesis test uses the
sampling distribution (which talks about all suitable
samples) and the value of the test statistic for the sample
that has actually been collected (the actual data):

1. First, calculate the t-statistic for the data you have

2. Then consider where the t-statistic for the data you
have lies on the sampling distribution. Two possible

values are shown in red and green, respectively, in
the diagram below.

— The distribution shown below is the sampling distribution
of the t-statistic.

— Remember that the validity of this picture depends on the
validity of the model assumptions and on the assumption
that the null hypothesis is true.
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Case 1:

If the t-statistic lies at the red bar (around 0.5) in the
picture, nothing is unusual; our data are not surprising if
the null hypothesis and model assumptions are true.
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Case 2:

If the t-statistic lies at the green bar (around 2.5),
then the data would be fairly unusual -- assuming the
null hypothesis and model assumptions are true.



So a t-statistic at the green bar could be
considered to cast some reasonable doubt on

the null hypothesis.

* A t-statistic even further to the right would
cast even more doubt on the null hypothesis.

To measure “degree of unusualness”, we define
the p-value for our data to be:

the area under the distribution of the test
statistic to the right of the value of the test
statistic obtained for our data.



This can be interpreted as:

The p-value is the probability of obtaining a test
statistic at least as large as the one from our
sample, provided that:

i. the null hypothesis is true and
ii. the model assumptions are all true, and

iii. we only consider samples of the same
size as ours.

i.e., the p-value is a conditional probability (with
three conditions). If the conditions are not
satisfied, the p-value cannot validly be interpreted.



Looking at this from another angle:

If we obtain an unusually small p-value, then (at
least) one of the following must be true:

1. At least one of the model assumptions is not
true (in which case the test may be
inappropriate).

2. The null hypothesis is false.

3. The null hypothesis is true, but the sample
we’ve obtained happens to be one of the small
percentage (of suitable samples from the same
population and of the same size as ours) that
result in an unusually small p-value.



Thus:
if the p-value is small enough
and all the model assumptions are met,

then rejecting the null hypothesis in favor of
the alternate hypothesis can be considered a
rational decision, based on the evidence of
the data used.

Note: This is not saying the alternate hypothesis
is true! Accepting the alternate hypothesis is a
decision made under uncertainty.



Some of the uncertainty:

1. How small is small enough to reject?

2. We usually don’t know whether or not the
models assumptions are true.

3. Even if they are, our sample might be one of
the small percentage giving an extreme test
statistic, even if the null hypothesis is true.



Type | error, significance level, and robustness

If possibility 3 occurs (i.e., we have falsely rejected the null
hypothesis), we say we have a Type | error.

Often people set a “significance level” (usually denoted a)
and decide (in advance, to be ethical) to reject the null
hypothesis whenever the p-value is less than a.

a can then be considered the “Type | error rate”: The
probability of falsely rejecting the null hypothesis (if the
model assumptions are satisfied)

Violations of model assumptions can lead to Type | error
rates different from what’s expected. = Online illustration.

Sometimes hypothesis tests are pretty close to accurate
when model assumptions are not too far off. This is called
robustness of the test.



More on Model Assumptions and Robustness

* Robustness conditions vary from test to test.

* Unfortunately, many textbooks omit discussion
of robustness (or even of model assumptions!).

— See Appendix A for some resources.

* |Independence assumptions are usually
extremely important.

— Lack of independence messes up variance
calculations.

— Whether or not independence assumptions fit usually
depends on how data were collected.
* Examples: paired data, repeated measures,
pseudoreplication
— Hierarchical (AKA multilevel) models can sometimes
take lack of independence into account



Checking model assumptions

You can’t be certain that they hold, but some
things can help catch problems. Examples:

* Plots of data and/or residuals

— See Sept 12 notes linmod.pdf for some examples

 Sometimes transformations (especially logs)
help.

e Occasionally plausibility arguments can help
(e.g., based on Central Limit Theorem)

 But some uncertainty usually is present!



Cautions in checking model assumptions

* Remember that checks can only help you spot
some violations of model assumptions; they
offer no guarantee of catching all of them.

e Remember: Be open about your uncertainty!

* | do not recommend using hypothesis tests to
check model assumptions.

— They introduce the complication of multiple
testing (more later)

— They also have model assumptions, which might
not be satisfied in your context.



Compare and contrast with Bayesian approach:

* Bayesian statistics involves model
assumptions to calculate the likelihood.

* |t also involves assumptions about the prior.

Thinking about assumptions (and being open
about uncertainty as to whether or not they
hold) is important in any type of statistical
inference!



V. Pay attention to consequences
and complications stemming from
Type | error.

A. Replication is important.

B. Do not omit observations just because
they’re outliers.

C. Multiple testing creates complications with
Type | error rate.

D. The Winner’s Curse



A. Replication is especially important
when using frequentist statistics.

* Replication™ is always desirable in science.

 When using frequentist statistics, the possibility
of Type | error makes replication* especially
Important.

* Publication bias (the tendency not to publish
results that are not statistically significant)
compounds the problem.

*Replication here refers to repeating the entire
study — including gathering new data.



B. Do not omit observations just
because they’re outliers

* Samples with outliers are often among those giving
extreme values of the test statistic (hence low p-

values).

* Thus omitting the outliers may misleadingly influence
the p-value: the proportion of Type | errors might be
more than the designated significance level if you omit
the outliers.

 Better:

— Only omit outliers if you have good reason to believe they
represent mistakes in reporting, etc.

— If you aren’t sure, analyze both with and without outliers
—and report both analyses.



C. Multiple testing creates complications in
the frequentist paradigm

Recall: If you perform a hypothesis test using a certain

significance level (we’ll use 0.05 for illustration), and if

you obtain a p-value less than 0.05, then there are three

possibilities:

1. The model assumptions for the hypothesis test are
not satisfied in the context of your data.

2. The null hypothesis is false.

3. Your sample happens to be one of the 5% of samples
satisfying the appropriate model conditions for which
the hypothesis test gives you a Type | error —i.e., you
falsely reject the null hypothesis.



Now suppose you’re performing two hypothesis tests,
using the same data for both.

— Suppose that in fact all model assumptions are satisfied
and both null hypotheses are true.

— There is in general no reason to believe that the samples
giving a Type | error for one test will also give a Type | error
for the other test.

— So the probability of falsely rejecting at least one null
hypothesis is usually greater than the probability of
rejecting a specific null hypothesis.

— Online Illlustrations

There are several ways (none perfect) to try to deal with
multiple inference.

— See Appendix for more details



D. The Winner’s Curse

Typically, the smaller the sample size, the wider
the sampling distribution. The picture below
illustrates this.

* |t shows the sampling distributions of the
mean for a variable with zero mean when

sample size n = 25 (red) and when n =100
(blue).

* The vertical lines toward the right of each
sampling distribution show the cut-off for a
one-sided hypothesis test with null hypothesis
1L = 0 and significance level alpha = .05.



Variability of results with different sample sizes

- sampling distriubution
of mean, n =25

- sampling distriubution
of mean, n =100




Notice that:

 The sampling distribution for the smaller
sample size (n = 25) is wider than the sampling
distribution for the larger sample size ( n =

100).

* Thus, when the null hypothesis is rejected with
the smaller sample size n = 25, the sample
mean tends to be noticeably larger than when

the null hypothesis is rejected with the larger
sample size n = 100.




This reflects the general phenomenon that studies
with smaller sample size have a larger chance of

exhibiting a large effect than studies with larger
sample size.

* |n particular, when a Type | error occurs with
small sample size, data are likely to show an

exaggerated effect. This is called “the winner’s
curse”.

* This is exacerbated by the “File Drawer
Problem” (also called publication bias): That
research with results that are not statistically
significant tend not to be published.

— The recent tendency of many journals to prefer

papers with “novel” results further increases the
problem.




APPENDIX A: Suggestions for finding out model
assumptions, checking them, and robustness

1. Textbooks. The best I’'ve found are:

 For basic statistical methods:

— DeVeaux et al, Stats: Data and Models, Addison-
Wesley 2012, Chapters 18 — 31. (Note: They don’t use
the word “robust,” but list “conditions” to check,
which essentially are robustness conditions.)

* For ANOVA:

— Dean and Voss, Design and Analysis of Experiments,
Springer, 1999. Includes many variations of ANOVA,
with descriptions of the experimental designs where
they are needed, and discussion of alternatives when
some model assumptions might be violated.



2. Finding model assumptions for unusual
methods.

— Unfortunately, software documentation of model
assumptions is often poor or absent.

— Your best bet may be to look up the original
paper introducing the method, or to try to
contact its originator.



3. Books on robustness. Perhaps the most useful
IS:

Wilcox, Rand R. (2005) Robust Estimation and
Hypothesis Testing, 2"¥ edition, Elsevier.

— Chapter 1 discusses why robust methods are
needed.

— Chapter 2 defines methods as robust if “slight
changes in a distribution have a relatively small
effect on their value, ” and provides theory of
methods to judge robustness.

— The remaining chapters discuss robust methods
for various situations.

— Implementations in R are provided.



4. Review articles discussing robustness for various
categories of techniques.

A couple I'm familiar with:

* Boos and Brownie (2004), Comparing Variances
and other Measures of Dispersion, Statistical
Science 19 (4), 571 — 578.

— Many tests for variances are highly non-robust;
reviews alternatives.

e Farrell et al (2007), On tests for multivariate
normality and associated simulation studies,
Journal of Statistical Computation and Simulation
vol 77, 1065 - 1080.

— See discussion at http://www.ma.utexas.edu/blogs/
mks/2013/09/04/test-mania/



If you're seeking information on robustness of
other types of techniques, the following journals
are generally reputable. (Note: Articles
accompanied by commentary by discussants
and a rejoinder may be especially helpful.)

* The American Statistician

* Annals of Applied Statistics

* Journal of the American Statistical Association
* Journal of the Royal Statistical Society

* Statistical Science



5. Doing simulations yourself

Simulating data from a distribution that your data might
plausibly come from may be more helpful than anything you can
find in the literature. An outline:

e Simulate data (of the same size as your data set) from the
plausible distribution.

* Perform the hypothesis test at a “nominal” significance level
alpha (e.g., .05 — or smaller if you’ll be doing multiple testing).

 Record whether or not the test yields p-value < alpha.
 Repeat for at least 1000 (better: 10,000) simulated data sets.

* Percent of simulated data sets with p-value less than alpha
gives your estimated actual significance level (if the plausible
distribution is correct).

 Compare nominal and estimated actual significance level.

Note: It’s probably a good idea to do this for more than one
distribution from which your data might plausibly come.



APPENDIX B: Methods for Handling
Multiple Inference

1. Bounding the overall Type | error rate

Recall: The Type I error rate for a single hypothesis
test is the probability of falsely rejecting the null
hypothesis (if the model assumptions are satisfied).

Analogously, the overall (or joint, family-wise,
experiment-wise, etc.) Type | error rate for a group
of hypothesis tests is the probability of falsely
rejecting at least one of the null hypotheses (if
model assumptions for all tests are satisfied.)




a. Many methods for bounding the overall Type
| error rate depend on the Bonferroni
inequality:

The overall Type | error rate for several
hypothesis tests is at most the sum of the

Type | error rates for the individual
significance tests.

There are (at least) four ways this inequality
can be applied:



I. The simple Bonferroni method: If you want
overall significance level for a group of n
hypothesis tests to be at most a, use
individual significance level a/n for each test.

ii. The Holms-Bonferroni method: This is an
algorithm for keeping the overall significance
level below the desired value, but is less
conservative than the simple Bonferroni
method
— See

http://en.wikipedia.org/wiki/Holm
%E2%80%93Bonferroni method for details




iii. The Bonferroni inequality can be used to
apportion Type | error between different

types of analysis.

— For example, if you want overall Type | error at
most .05, and some tests are more important than
others, you might decide to keep overall Type |
error rate at .04 for the important ones, and at .01

for the others.
— This can be applied with pre-planned tests

considered important, and additional “data
snooping” tests considered less important.

e BUT — be sure to include ALL tests done (even
informally), NOT just those you decide to report.



iv. The Bonferroni idea can also be used to
bound overall confidence level when forming
multiple confidence intervals using the same
data:

— If you want overall confidence level 1-a for n

confidence intervals, use individual confidence
levels 1- a/n.

— Or use individual confidence levels 1 — a,, where
the a.’s add to a.

— But ethics requires that you make your decision
before doing the analysis!



b. Specialized methods have been developed
for special circumstances. For example,

— There are several methods for bounding overall

Type | error rate when testing contrasts in
ANOVA.

— Special techniques to take spatial correlation into
account have been developed for use in
neuroscience.



2. Bounding the False Discovery Rate (FDR)

The False Discovery Rate (FDR) of a group of tests
is the expected value of the ratio of falsely rejected
hypotheses to all rejected hypotheses.

e "Expected value" refers to the mean of a
distribution. Here, the distribution is the
sampling distribution of the ratio of falsely

rejected hypotheses to all rejected hypotheses
tested.

 FDR makes sense for exploratory research, but is
guestionable for confirmatory research.

* For details, see
http://en.wikipedia.org/wiki/False discovery rate




3. Sometimes using a Bayesian multilevel
modeling framework can get around the
problem of multiple testing.

* See Gelman et al (2012), Why We (Usually)
Don’t Have to worry About Multiple
Comparisons, Journal on Research on
Educational Effectiveness, 5: 189 — 211,
http://www.stat.columbia.edu/~gelman/
research/published/multiple2f.pdf for details.




4. Perhaps the most comprehensive resource on
multiple testing is

B. Efron (2010), Large-Scale Inference: Empirical
Bayes Methods for Estimation, Testing, and
Prediction, Cambridge (available online as

course notes at http://statweb.stanford.edu/
~omkar/329/)



Contact Info and Links to Further
Resources

Email: mks(at)math(dot)utexas.edu

Notes and other links for 2014 SSI course Common
Mistakes in Using Statistics,
http://www.ma.utexas.edu/users/mks/
CommonMistakes2014/
commonmistakeshome2014.html

Website Common Mistakes in using Statistics
http://www.ma.utexas.edu/users/mks/statmistakes/
StatisticsMistakes.htm| (More extensive but less
polished than the SSI notes)

Blog Musings on Using and Misusing Statistics http://
www.ma.utexas.edu/blogs/mks/




