	Population	One Simple Random Sample y $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y n}_{\mathbf{n}}$ of size n	All Simple Random Samples of size n
Associated Random Variable	Y	\bar{Y}_{n}	
Associated Distribution	Distribution of Y	Distribution of Y	The population for \bar{Y}_{n} is all simple random samples from Y. The value of \bar{Y}_{n} for a particular simple random sample is the sample mean \bar{y}^{\prime} for that sample.
Associated Mean(s)	Population mean μ, also called E(Y), or the expected value of Y, or the expectation of Y	Sample mean $\bar{y}=\left(\mathrm{y}_{1}+\mathrm{y}_{2}+\ldots+\mathrm{y}_{\mathrm{n}}\right) / \mathrm{n}$ It's an estimate of μ.	Sampling Distribution mean, E $\left(\bar{Y}_{n}\right)$. A mathematical theorem tells us that E $\left(\bar{Y}_{n}\right)=\mu$. In other words, the random variables Y and \bar{Y}_{n} have the same mean.
Associated Standard Deviation	Population standard deviation σ	Sample standard deviation $\mathrm{s}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(\bar{x}-x_{i}\right)^{2}}$ s is an estimate of the population standard deviation σ	Sampling distribution standard deviation. A a math theorem tells us that the sampling standard deviation is σ / \sqrt{n}

