	Population	One Simple Random Sample $y_1, y_2,, y_n$ of size n	All Simple Random Samples of size n
Associated Random Variable	Y	Y	\overline{Y}_n The population for \overline{Y}_n is all simple random samples from Y. The value of \overline{Y}_n for a particular simple random sample is the sample mean \overline{y} for that sample.
Associated Distribution	Distribution of Y	Distribution of Y	Sampling Distribution
Associated Mean(s)	Population mean μ, also called E(Y), or the expected value of Y, or the expectation of Y	Sample mean $\overline{y} = (y_1 + y_2 + + y_n)/n$ It's an estimate of μ .	Since it is a random variable, \overline{Y}_n also has a mean, $E(\overline{Y}_n)$. A mathematical theorem tells us that $E(\overline{Y}_n) = \mu$. In other words, the random variables Y and \overline{Y}_n have the same mean.
Associated Standard Deviation	Population standard deviation σ	Sample standard deviation $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (\overline{x} - x_i)^2}$ s is an <u>estimate</u> of the population standard deviation σ	Sampling distribution standard deviation. A a math theorem tells us that the sampling standard deviation is σ / \sqrt{n}