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The following chart summarizes which model assumptions are 

necessary to prove which part of the theorem: 

 Conclusions about Sampling Distribution 

(Distribution of 

! 

Y 
n ) 

 1: Normal 2: Mean ! 3: Standard 

deviation 

! 

"
n

  

Assumption 1 

(Y normal) 

 
! 

 

 

 

 

Assumption 2 

(simple random 

samples) 

 
! 

  
! 

(Note that the conclusion that the sampling distribution 

! 

Y 
n  has the 

same mean as Y does not involve either of the model assumptions.) 
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• The conclusions of the theorem will allow us to do the 

following: 

o If we specify a probability (we'll use .95 to illustrate), we 

can find a number a so that 

(*)    The probability that 

! 

Y 
n  lies between µ - a and µ + a is 

approximately 0.95.  

 

Caution: It is important to get the reference category 

straight here. This amounts to keeping in mind what is a 

random variable and what is a constant. Here, 

! 

Y 
n  is the 

random variable (that is, the sample is varying), whereas  

µ is constant. 

 

Note: The z-procedure for confidence intervals is only an 

approximate procedure; that is why the “approximately” is 

in (*) and below.  Many procedures are “exact”; we don’t 

need the “approximately” for them. 
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o A little algebraic manipulation allows us to restate (*) as 

(**)   The probability that µ lies between 

! 

Y 
n  - a and 

! 

Y 
n  + a  

  is approximately 0.95  

 

Caution: It is again important to get the reference category 

correct here. It hasn't changed: it is still the sample that is 

varying, not µ.  So the probability refers to 

! 

Y 
n , not to µ. 

 

 Thinking that the probability refers to µ is a common 

mistake in interpreting confidence intervals. 

 

 It may help to restate (**) as: 

 

(***) The probability that the interval from  

 

! 

Y 
n  - a to 

! 

Y 
n  + a  contains µ is approximately 0.95. 
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• We are now faced with two possibilities (assuming the model 

assumptions are indeed all true): 

1) The sample we have taken is one of the approximately 

95% for which the interval from 

! 

Y 
n - a to 

! 

Y 
n + a does 

contain µ. " 

 

2) Our sample is one of the approximately 5% for which the 

interval from 

! 

Y 
n  - a to 

! 

Y 
n  + a does not contain µ.  

! 

••

"

# 

$ 
% 

& 

' 
( 

 

 

• Unfortunately, we can't know which of these two possibilities 

is true.  

! 

••

"

# 

$ 
% 

& 

' 
( 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 29 

• Since this is the best we can do, we calculate the values of 

! 

Y 
n  - a 

and 

! 

Y 
n  + a for the sample we have, and call the resulting interval 

an approximate 95% confidence interval for µ.  

o We can say that we have obtained the confidence interval 

by using a procedure that, for approximately 95% of all 

simple random samples from Y, of the given size, produces 

an interval containing the parameter we are estimating.  

o Unfortunately, we can't know whether or not the sample 

we have used is one of the approximately 95% of "good" 

samples that yield a confidence interval containing the true 

mean µ, or whether the sample we have is one of the 

approximately 5% of "bad" samples that yield a 

confidence interval that does not contain the true mean µ.  

o We can just say that we have used a procedure that 

"works" about 95% of the time.   

o Various web demos can demonstrate. 
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In general: We can follow a similar procedure for many other 

situations to obtain confidence intervals for parameters. 

• Each type of confidence interval procedure has its own model 

assumptions. 

o If the model assumptions are not true, we can’t be sure 

that the procedure does what is claimed.  

o However, some procedures are robust to some degree to 

some departures from models assumptions -- i.e., the 

procedure works pretty closely to what is intended if the 

model assumption is not too far from true. 

o Robustness depends on the particular procedure; there are 

no "one size fits all" rules. 
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• We can decide on the "level of confidence" we want;  

o E.g., we can choose 90%, 99%, etc. rather than 95%. 

o Just which level of confidence is appropriate depends on 

the circumstances. (More later) 

• The confidence level is the percentage of samples for which 

the procedure results in an interval containing the true 

parameter. (Or approximate percentage, if the procedure is 

not exact.) 

• However, a higher level of confidence will produce a wider 

confidence interval. (See demo) 

o i.e., less certainty in our estimate.  

o So there is a trade-off between level of confidence and 

degree of certainty. 
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• Sometimes the best we can do is a procedure that only gives 

approximate confidence intervals. 

o i.e., the sampling distribution can be described only 

approximately. 

o i.e., there is one more source of uncertainty. 

o This is the case for the large-sample z-procedure. 

 

• If the sampling distribution is not symmetric, we can't expect 

the confidence interval to be symmetric around the estimate. 

o In this case, there might be more than one reasonable 

procedure for calculating the endpoints of the confidence 

interval. 

 

• There are variations such as "upper confidence limits" or 

"lower confidence limits" where we are only interested in 

estimating how large or how small the estimate might be. 
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V. MORE ON FREQUENTIST HYPOTHESIS TESTS 

 

We’ll now continue the discussion of hypothesis tests. 

 

Recall:  Most commonly used frequentist hypothesis tests involve 

the following elements: 

 

   1. Model assumptions  

   2. Null and alternative hypothesis 

   3. A test statistic (something calculated by a rule from a sample)  

o This needs to have the property that extreme values of the 

test statistic cast doubt on the null hypothesis. 

o The test statistic will have a certain sampling distribution. 

   4. A mathematical theorem saying, "If the model assumptions 

and the null hypothesis are both true, then the sampling 

distribution of the test statistic has this particular form." 

 

The exact details of these four elements will depend on the 

particular hypothesis test. 
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Illustration: One-sided t-test for a Sample Mean  

 

In this situation, the four elements above are: 

 

1. Model assumptions: 

• The random variable Y is normally distributed.  

• Samples are simple random samples. 

 

2. Null and alternate hypotheses: 

• Null hypothesis: The population mean ! of the random 

variable Y is !0.  

• Alternative hypothesis: The population mean ! of the random 

variable Y is greater than !0. (i.e., ! > !0)  

3. Test statistic: For a simple random sample y1, y2, ... , yn of size n, 

we define the t-statistic as 

          t = 

! 

y "µ
0

s
n

  , 

where 

 

! 

y  = (y1+ y2+ ... + yn)/n  (sample mean),  

and 

s =  

! 

1

n "1
(x " x

i
)
2

i=1

n

#  (sample standard deviation) 
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The sampling distribution for this test is then the distribution of the 

random variable Tn defined by random process and calculation, 

“Randomly choose a simple random sample of size n and 

calculate the t-statistic for that sample.”  

4. The mathematical theorem associated with this inference 

procedure (one-sided t-test for population mean) says: 

 If the model assumptions are true and the null hypothesis is 

true, then the sampling distribution is the t-distribution with n 

degrees of freedom.  

(For large values of n, the t-distribution looks very much like the 

standard normal distribution; but as n gets smaller, the peak gets 

slightly smaller and the tails go further out.) 

The reasoning behind the hypothesis test uses the sampling 

distribution and the value of the test statistic for the sample that 

has actually been collected (the actual data). 

1. First, calculate the t-statistic for the data 

2. Then consider where the t-statistic for the data at hand lies 

on the sampling distribution.  Two possible values are shown 

in red and green, respectively, in the diagram below. 

o  Remember that this picture depends on the validity of the 

model assumptions and on the assumption that the null 

hypothesis is true. 
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Case 1: If the t-statistic lies at the red bar (around 0.5) in the 

picture, nothing is unusual; our data are consistent with the null 

hypothesis.  

 

Case 2: If the t-statistic lies at the green bar (around 2.5), then the 

data would be fairly unusual -- assuming the null hypothesis is 

true.  

 

So a t-statistic at the green bar would cast some reasonable doubt 

on the null hypothesis.  

 

A t-statistic even further to the right would cast even more doubt 

on the null hypothesis.
 

 

Note: A little algebra will show that if t = 

! 

y "µ
0

s
n

 is unusually 

large, then so is 

! 

y , and vice-versa 
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p-Values 

 

The p-value is a quantitative measure of how unusual a particular 

test statistic is, with lower p-values indicating more unusual data. 

The general definition is: 

p-value = the probability of obtaining a test statistic at least as 

extreme as the one from the data at hand, assuming the model 

assumptions and the null hypothesis are all true.   

The interpretation of "at least as extreme as" depends on the 

alternative hypothesis.   

• For the one-sided alternative hypothesis ! > !0  (as in our 

example), "at least as extreme as" means "at least as great as".  

o Recalling that the probability of a random variable lying in 

a certain region is the area under the probability 

distribution curve over that region, we conclude that for 

this alternative hypothesis, the p-value is the area under the 

distribution curve to the right of the test statistic calculated 

from the data.  

o Note that, in the picture, the p-value for the t-statistic at the 

green bar is much less than that for the t-statistic at the red 

bar. 
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• Similarly, for the other one-sided alternative, ! < !0 , the p-

value is the area under the distribution curve to the left of the 

calculated test statistic.  

o Note that for this alternative hypothesis, the p-value for the 

t-statistic at the green bar would be much greater than the 

t-statistic at the red bar, but both would be large as p-

values go. 

• For the two-sided alternative ! " !0, the p-value would be the 

area under the curve to the right of the absolute value of the 

calculated t-statistic, plus the area under the curve to the left 

of the negative of the absolute value of the calculated t-

statistic.  

o Since the sampling distribution in the illustration is 

symmetric about zero, the two-sided p-value of, say the 

green value, would be twice the area under the curve to the 

right of the green bar.   
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Recall that in the sampling distribution, we are only considering 

samples  

• from the same random variable,  

• that fit the model assumptions and 

• of the same size as the one we have.  

 

So if we spelling everything out, the definition of p-value reads: 

p-value = the probability of obtaining a test statistic at least as 

extreme as the one from the data at hand, assuming  

• the model assumptions are all true, and 

• the null hypothesis is true, and 

• the random variable is the same (including the same 

population), and 

• the sample size is the same. 
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Comment: The preceding discussion can be summarized as 

follows: 

 

 If we obtain an unusually small p-value, then (at least) one of the 

following must be true: 

• At least one of the model assumptions is not true (in which 

case the test may be inappropriate). 

• The null hypothesis is false. 

• The sample we have obtained happens to be one of the 

small percentage that result in an unusually small p-value. 

Thus, if the p-value is small enough and all the model assumptions 

are met, then rejecting the null hypothesis in favor of the alternate 

hypothesis can be considered a rational decision, based on the 

evidence of the data used. 

 

Comments:  

1. How small is "small enough" is a judgment call. 

2. "Rejecting the null hypothesis" does not mean the null 

hypothesis is false or that the alternate hypothesis is true. (Why?) 
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MISINTERPRETATIONS AND MISUSES OF P-VALUES 
 

Recall:  

p-value = the probability of obtaining a test statistic at least as 

extreme as the one from the data at hand, assuming:  

• the model assumptions for the inference procedure used 

are all true, and  

• the null hypothesis is true, and  

• the random variable is the same (including the same 

population), and  

• the sample size is the same. 

Notice that this is a conditional probability: The probability that 

something happens, given that various other conditions hold. One 

common mistake is to neglect some or all of the conditions. 
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Example A: Researcher 1 conducts a clinical trial to test a drug for 

a certain medical condition on 30 patients all having that condition.  

• The patients are randomly assigned to either the drug or a 

look-alike placebo (15 each).  

• Neither patients nor medical personnel know which patient 

takes which drug.  

• Treatment is exactly the same for both groups, except for 

whether the drug or placebo is used.  

• The hypothesis test has null hypothesis "proportion 

improving on the drug is the same as proportion improving 

on the placebo" and alternate hypothesis "proportion 

improving on the drug is greater than proportion improving 

on the placebo."  

• The resulting p-value is p = 0.15.  

 Researcher 2 does another clinical trial on the same drug, 

with the same placebo, and everything else the same except that 

200 patients are randomized to the treatments, with 100 in each 

group. The same hypothesis test is conducted with the new data, 

and the resulting p-value is p = 0.03.  

    Are these results contradictory? No -- since the sample sizes are 

different, the p-values are not comparable, even though everything 

else is the same.  

Indeed, a larger sample size typically results in a smaller p-value. 

The idea of why this is true is illustrated by the case of the z-

test, since large n gives a smaller standard deviation of the 

sampling distribution, hence a narrower sampling 

distribution.  

Comparing p-values for samples of different size is a common 

mistake. 
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Example B: Researcher 2 from Example A does everything as 

described above, but for convenience, his patients are all from the 

student health center of the prestigious university where he works. 

• He cannot claim that his result applies to patients other than 

those of the age and socio-economic background, etc. of the 

ones he used in the study, because his sample was taken from 

a smaller population. 

 

Example C: Researcher 2 proceeds as in Example A, with a sample 

carefully selected from the population to which he wishes to apply 

his results, but he is testing for equality of the means of an 

outcome variable for the two groups. 

• The hypothesis test he uses requires that the variance of the 

outcome variable for each group compared is the same.  

• He doesn’t check this, and in fact the variance for the 

treatment group is twenty times as large as the variance for 

the placebo group.  

• He is not justified in rejecting the null hypothesis of equal 

means, no matter how small his p-value (unless by some 

miracle the statistical test used is robust to such large 

departures from the model assumption of equality of 

variances.) 
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Another common misunderstanding of p-values is the belief that 

the p-value is "the probability that the null hypothesis is true".  

• This is essentially a case of confusing a conditional probability 

with the reverse conditional probability: In the definition of p-

value, “the null hypothesis is true” is the condition, not the 

event.  

• The basic assumption of frequentist hypothesis testing is that the 

null hypothesis is either true (in which case the probability that 

it is true is 1) or false (in which case the probability that it is true 

is 0) – so unless p = 0 or 1, the p-value couldn’t possibly be the 

probability that the null hypothesis is true. 

 

Note:  In the Bayesian perspective, it makes sense to consider "the 

probability that the null hypothesis is true" as having values other 

than 0 or 1.  

• In that perspective, we consider "states of nature;" in different 

states of nature, the null hypothesis may have different 

probabilities of being true.  

• The goal is then to determine the probability that the null 

hypothesis is true, given the data.  

• This is the reverse conditional probability from the one 

considered in frequentist inference (the probability of the data 

given that the null hypothesis is true). 

 

 

 

 

 


