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I: TY PE I ERROR AND SIGNIFICANCE LEVEL 

 

Type I Error: 

Rejecting the null hypothesis when it is in fact true is called a Type 

I error.  

Significance level: 

Many people decide, before doing a hypothesis test, on a 

maximum p-value for which they will reject the null hypothesis. 

This value is often denoted ! (alpha) and is also called the 

significance level.   

When a hypothesis test results in a p-value that is less than the 

significance level, the result of the hypothesis test is called 

statistically significant. 

 

Confusing statistical significance and practical significance is a 

common mistake.  

Example: A large clinical trial is carried out to compare a new 

medical treatment with a standard one. The statistical analysis 

shows a statistically significant difference in lifespan when 

using the new treatment compared to the old one.  

• However, the increase in lifespan is at most three days, 

with average increase less than 24 hours, and with poor 

quality of life during the period of extended life.  

• Most people would not consider the improvement 

practically significant. 

 

Caution: The larger the sample size, the more likely a 

hypothesis test will detect a small difference. Thus it is 

especially important to consider practical significance when 

sample size is large. 
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Connection between Type I error and significance level:     

A significance level ! corresponds to a certain value of the test 

statistic, say t!, represented by the orange line in the picture of a 

sampling distribution below (the picture illustrates a hypothesis 

test with alternate hypothesis "" > 0"). 

 

• Since the shaded area indicated by the arrow is the p-value 

corresponding to t!, that p-value (shaded area) is !.  

• To have p-value less than !, a t-value for this test must be to 

the right of t!.  

• So the probability of rejecting the null hypothesis when it is 

true is the probability that t > t! , which we have seen is !.  

• In other words, the probability of Type I error is !. 

• Rephrasing using the definition of Type I error:  

The significance level ! is the probability of making the 

wrong decision when the null hypothesis is true. 

• Note:  

o ! is also called the bound on Type I error.  

o Choosing a value ! is sometimes called setting a bound on 

Type I error. 
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Claiming that an alternate hypothesis has been “proved” because it 

has been rejected in a hypothesis test is a common mistake in 

using statistics. (This is one instance of the mistake of “expecting 

too much certainty” discussed in Part I.) 

• There is always a possibility of a Type I error; the sample in 

the study might have been one of the small percentage of 

samples giving an unusually extreme test statistic. 

• This is why replicating experiments (i.e., repeating the 

experiment with another sample) is important. The more 

experiments that give the same result, the stronger the 

evidence. 

• There is also the possibility that the sample is biased or the 

method of analysis was inappropriate; either of these could 

lead to a misleading result. 
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II: PROS AND CONS OF  

SETTING A SIGNIFICANCE LEVEL 

• Setting a significance level (before doing inference) has the 

advantage that the analyst is not tempted to chose a cut-off 

on the basis of what he or she hopes is true.  

• It has the disadvantage that it neglects that some p-values 

might best be considered borderline.  

o This is one reason why it is important to report p-values 

when reporting results of hypothesis tests. It is also good 

practice to include confidence intervals corresponding to 

the hypothesis test.  

o For example, if a hypothesis test for the difference of two 

means is performed, also give a confidence interval for the 

difference of those means.  

o If the significance level for the hypothesis test is .05, then 

use confidence level 95% for the confidence interval. 
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III.TYPE II ERROR 

Not rejecting the null hypothesis when in fact the alternate 

hypothesis is true is called a Type II error. 

• Example 2 below provides a situation where the concept of 

Type II error is important.  

Note: "The alternate hypothesis" in the definition of Type II error 

may refer to the alternate hypothesis in a hypothesis test, or it may 

refer to a "specific" alternate hypothesis. 

Example: In a t-test for a sample mean ", with null hypothesis "" = 

0" and alternate hypothesis "" > 0":  

• We might talk about the Type II error relative to the general 

alternate hypothesis "" > 0". 

• Or we might talk about the Type II error relative to the 

specific alternate hypothesis "" = 1".  

• Note that the specific alternate hypothesis is a special case of 

the general alternate hypothesis. 

In practice, people often work with Type II error relative to a 

specific alternate hypothesis.  

• In this situation, the probability of Type II error relative to the 

specific alternate hypothesis is often called #.  

• In other words, # is the probability of making the wrong 

decision when the specific alternate hypothesis is true.  

• The specific alternative is considered since it is more feasible 

to calculate # than the probability of Type II error relative to 

the general alternative. 

• See the discussion of power below for related detail.  
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IV: CONSIDERING BOTH TYPES OF ERROR TOGETHER 

  

The following table summarizes Type I and Type II errors:  

Truth  

(for population studied) 

 

Null 

Hypothesis 

True 

Null 

Hypothesis 

False 

Reject Null 

Hypothesis 

Type I Error Correct 

Decision 

     

Decision   

(based on 

sample) Don’t reject 

Null 

Hypothesis 

Correct 

Decision 

Type II 

Error 

 

An analogy that can be helpful in understanding the two types of 

error is to consider a defendant in a trial.  

• The null hypothesis is "defendant is not guilty."  

• The alternate is "defendant is guilty." 

• A Type I error would correspond to convicting an innocent 

person. 

• Type II error would correspond to setting a guilty person free.  

• The analogous table would be: 
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Truth   

Not Guilty Guilty 

 

Guilty 

Type I Error -- 

Innocent 

person goes to 

jail (and maybe 

guilty person 

goes free) 

 

Correct 

Decision 

  

 

 

Verdict 

 

Not Guilty 

 

Correct 

Decision 

Type II 

Error -- 

Guilty 

person goes 

free 

 

Note:  

• This could be more than just an analogy if the verdict hinges 

on statistical evidence (e.g., a DNA test), and where rejecting 

the null hypothesis would result in a verdict of guilty, and not 

rejecting the null hypothesis would result in a verdict of not 

guilty. 

• This analogy/example shows that sometimes a Type I error 

can be more serious than a Type II error. (However, this is 

not always the case). 

 

 

 

 

 

 

 

 

 10 

The following diagram illustrates the Type I error and the Type II 

error  

• against the specific alternate hypothesis "" =1"  

• in a hypothesis test for a population mean ",  

• with null hypothesis "" = 0,"   

• alternate hypothesis "" > 0",  

• and significance level != 0.05.  
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In the diagram, 

• The blue (leftmost) curve is the sampling distribution of the 

test statistic assuming the null hypothesis "" = 0." 

• The green (rightmost) curve is the sampling distribution of 

the test statistic assuming the specific alternate hypothesis "" 

=1".  

• The vertical red line shows the cut-off for rejection of the 

null hypothesis:  

o The null hypothesis is rejected for values of the test 

statistic to the right of the red line (and not rejected for 

values to the left of the red line). 

• The area of the diagonally hatched region to the right of the 

red line and under the blue curve is the probability of type I 

error (!). 

• The area of the horizontally hatched region to the left of the 

red line and under the green curve is the probability, #, of 

Type II error against the specific alternative.  
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V. DECIDING WHAT SIGNIFICANCE LEVEL TO USE 

 

This should be done before analyzing the data -- preferably before 

gathering the data. There are (at least) two reasons why this is 

important:  

 

1) The significance level desired is one criterion in deciding on an 

appropriate sample size.  

• See discussion of Power below. 

 

2) If more than one hypothesis test is planned, additional 

considerations need to be taken into account.  

• More tomorrow 

 

The choice of significance level should be based on the 

consequences of Type I and Type II errors: 

 

1. If the consequences of a Type I error are serious or expensive, a 

very small significance level is appropriate. 

 

Example 1: Two drugs are being compared for effectiveness in 

treating the same condition.  

o Drug 1 is very affordable, but Drug 2 is extremely 

expensive.   

o The null hypothesis is “both drugs are equally effective.”  

o The alternate is “Drug 2 is more effective than Drug 1.” 

o In this situation, a Type I error would be deciding that 

Drug 2 is more effective, when in fact it is no better than 

Drug 1, but would cost the patient much more money.  

o That would be undesirable from the patient’s perspective, 

so a small significance level is warranted. 
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2. If the consequences of a Type I error are not very serious (and 

especially if a Type II error has serious consequences), then a 

larger significance level is appropriate. 

Example 2: Two drugs are known to be equally effective for a 

certain condition.  

o They are also each equally affordable.  

o However, there is some suspicion that Drug 2 causes a 

serious side effect in some patients, whereas Drug 1 has 

been used for decades with no reports of serious side 

effects. 

o The null hypothesis is "the incidence of serious side effects 

in both drugs is the same".  

o The alternate is "the incidence of serious side effects in 

Drug 2 is greater than that in Drug 1."  

o Falsely rejecting the null hypothesis when it is in fact true 

(Type I error) would have no great consequences for the 

consumer. 

o But a Type II error (i.e., failing to reject the null 

hypothesis when in fact the alternate is true, which would 

result in deciding that Drug 2 is no more harmful than 

Drug 1 when it is in fact more harmful) could have serious 

consequences from a consumer and public health 

standpoint.  

o So setting a large significance level is appropriate.  
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Comments:  

• Neglecting to think adequately about possible consequences 

of Type I and Type II errors (and deciding acceptable levels 

of Type I and II errors based on these consequences) before 

conducting a study and analyzing data is a common mistake 

in using statistics.  

• Sometimes there may be serious consequences of each 

alternative, so some compromises or weighing priorities may 

be necessary.  

o The trial analogy illustrates this well: Which is better or 

worse, imprisoning an innocent person or letting a guilty 

person go free?  

o This is a value judgment; value judgments are often 

involved in deciding on significance levels.  

o Trying to avoid the issue by always choosing the same 

significance level is itself a value judgment.  

• Different people may decide on different standards of 

evidence. 

o This is another reason why it is important to report p-

values even if you set a significance level.  

o It is not enough just to say, “significant at the .05 level,” 

“significant at the .01 level,” etc. 

• Sometimes different stakeholders have different interests that 

compete (e.g., in the second example above, the developers 

of Drug 2 might prefer to have a smaller significance level.) 

o This is another reason why it is important to report p-

values in publications. 

• See Wuensch (1994) for more discussion of considerations 

involved in deciding on reasonable levels for Type I and 

Type II errors.  

• See also the discussion of Power below.  

• Similar considerations hold for setting confidence levels for 

confidence intervals 
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VI: POWER OF A STATISTICAL PROCEDURE 

Overview   

 

The power of a statistical procedure can be thought of as the 

probability that the procedure will detect a true difference of a 

specified type.  

• As in talking about p-values and confidence levels, the 

reference category for "probability" is the sample. 

• Thus, power is the probability that a randomly chosen sample  

o satisfying the model assumptions  

o will give evidence of a difference of the specified type 

when the procedure is applied,  

o if the specified difference does indeed occur in the 

population being studied.  

• Note also that power is a conditional probability: the 

probability of detecting a difference, if indeed the difference 

does exist. 
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In many real-life situations, there are reasonable conditions that we 

would be interested in being able to detect, and others that would 

not make a practical difference.  

Examples: 

• If you can only measure the response to within 0.1 units, it 

doesn't really make sense to worry about falsely rejecting 

a null hypothesis for a mean when the actual value of the 

mean is within less than 0.1 units of the value specified in 

the null hypothesis. 

• Some differences are of no practical importance -- for 

example, a medical treatment that extends life by 10 

minutes is probably not worth it.  

 

In cases such as these, neglecting power could result in one or 

more of the following: 

• Doing much more work or going to more expense than 

necessary 

• Obtaining results which are meaningless 

• Obtaining results that don't answer the question of interest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 17 

Elaboration 

 

For many confidence interval procedures, power can be defined as:  

 

The probability (again, the reference category is “samples”) 

that the procedure will produce an interval with a half-width 

of at least a specified amount.  

 

For a hypothesis test, power can be defined as: 

 

The probability (again, the reference category is “samples”) 

of rejecting the null hypothesis under a specified condition.  

 

Example: For a one-sample t-test for the mean of a 

population, with null hypothesis Ho: " = 100, you might be 

interested in the probability of rejecting Ho when " $ 105, or 

when |" - 100| > 5, etc.  

As with Type II Error, we may think of power for a 

hypothesis test in terms of power against a specific 

alternative rather than against a general alternative. 
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Example: If we are performing a hypothesis test for the mean of a 

population, with null hypothesis H0: " = 0 and alternate hypothesis 

" > 0, we might calculate the power of the test against the specific 

alternative H1: " = 1, or against the specific alternative H3: " = 3, 

etc.  

The picture below shows three sampling distributions: 

• The sampling distribution assuming H0 (blue; leftmost curve) 

• The sampling distribution assuming H1 (green; middle curve) 

• The sampling distribution assuming H3 (yellow; rightmost 

curve) 

The red line marks the cut-off corresponding to a significance level 

! = 0.05.  
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• Thus the area under the blue curve to the right of the red 

line is 0.05. 

• The area under the green curve the to right of the red line 

is the probability of rejecting the null hypothesis (" = 0) if 

the specific alternative H1: " = 1 is true.  

o In other words, this area is the power of the test against 

the specific alternative H1: " = 1.  

o We can see in the picture that in this case, this power is 

greater than 0.05, but noticeably less than 0.50. 

• Similarly, the area under the yellow curve the to right of 

the red line is the power of the test against the specific 

alternative H3: " = 3.  

o Notice that the power in this case is much larger than 

0.5. 

This illustrates the general phenomenon that the farther an 

alternative is from the null hypothesis, the higher the power of the 

test to detect it.  (See Claremont Graduate University WISE 

Project Statistical Power Demo for an interactive illustration.) 

Note:  

• For most tests, it is possible to calculate the power against a 

specific alternative, at least to a reasonable approximation. 

(More below and in Appendix) 

• It is not usually possible to calculate the power against a 

general alternative, since the general alternative is made up 

of infinitely many possible specific alternatives.  
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Power and Type II Error 

 

Recall: The Type II Error rate # of a test against a specific alternate 

hypothesis test is represented in the diagram above as the area 

under the sampling distribution curve for that alternate hypothesis 

and to the left of the cut-off line for the test. Thus  

#  + (Power of a test against a specific alternate hypothesis)  

 = total area under sampling distribution curve  

 = 1,  

so 

Power = 1 - # 
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Factors that Affect the Power of a Statistical Procedure 

 

Power depends on several factors in addition to the difference to be 

detected. 

1. Significance Level 

This can be seen in the diagram illustrating power: Increasing the 

significance level ! will move the red line to the left, and hence 

will increase power. Similarly, decreasing significance level 

decreases power.  

2. Sample Size 

Example: The pictures below each show the sampling distribution 

for the mean under the null hypothesis µ = 0 (blue -- on the left in 

each picture) together with the sampling distribution under the 

alternate hypothesis µ = 1 (green -- on the right in each picture), 

but for different sample sizes.  

• The first picture is for sample size  n = 25; the second picture 

is for sample size n = 100.  

• Note that both graphs are in the same scale. In both pictures, 

the blue curve is centered at 0 (corresponding to the the null 

hypothesis) and the green curve is centered at 1 

(corresponding to the alternate hypothesis). 

• In each picture, the red line is the cut-off for rejection with 

alpha = 0.05 (for a one-tailed test) -- that is, in each picture, 

the area under the blue curve to the right of the red line is 

0.05.  

• In each picture, the area under the green curve to the right of 

the red line is the power of the test against the alternate 

depicted. Note that this area is larger in the second picture 

(the one with larger sample size) than in the first picture.  
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This illustrates the general situation:  

 Larger sample size gives larger power.  

The reason is essentially the same as in the example: Larger 

sample size gives a narrower sampling distribution, which means 

there is less overlap in the two sampling distributions (for null and 

alternate hypotheses). 

See Claremont University’s Wise Project’s Statistical Power 

Applet (http://wise.cgu.edu/powermod/power_applet.asp) for an 

interactive demonstration of the interplay between sample size and 

power for a one-sample z-test. 

Note: Sample size needed typically increases at an increasing rate 

as power increases. (e.g., in the above example, increasing the 

sample size by a factor of 4 increases the power by a factor of 

about 2; the graphics aren't accurate enough to show this well.) 
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3. Variance 

Power also depends on variance: smaller variance yields higher 

power.  

 

Example: The pictures below each show the sampling distribution 

for the mean under the null hypothesis µ = 0 (blue -- on the left in 

each picture) together with the sampling distribution under the 

alternate hypothesis µ = 1 (green -- on the right in each picture), 

both with sample size 25, but for different standard deviations of 

the underlying distributions. (Different standard deviations might 

arise from using two different measuring instruments, or from 

considering two different populations.) 

• In the first picture, the standard deviation is 10; in the second 

picture, it is 5.  

• Note that both graphs are in the same scale. In both pictures, 

the blue curve is centered at 0 (corresponding to the the null 

hypothesis) and the green curve is centered at 1 

(corresponding to the alternate hypothesis). 

• In each picture, the red line is the cut-off for rejection with 

alpha = 0.05 (for a one-tailed test) -- that is, in each picture, 

the area under the blue curve to the right of the red line is 

0.05.  

• In each picture, the area under the green curve to the right of 

the red line is the power of the test against the alternate 

depicted. Note that this area is larger in the second picture 

(the one with smaller standard deviation) than in the first 

picture.  
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(See Claremont University’s Wise Project’s Statistical Power 

Applet at http://wise.cgu.edu/powermod/power_applet.asp or  the 

Rice Virtual Lab in Statistics’ Robustness Simulation at 

http://onlinestatbook.com/stat_sim/robustness/index.html for an 

interactive demonstration.) 

Note: Variance can sometimes be reduced by using a better 

measuring instrument, restricting to a subpopulation, or by 

choosing a better experimental design (see below). 
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4. Experimental Design 

Power can sometimes be increased by adopting a different 

experimental design that has lower error variance. For example, 

stratified sampling or blocking can often reduce error variance and 

hence increase power. However, 

• The power calculation will depend on the experimental 

design.  

• The statistical analysis will depend on the experimental 

design. (To be discussed tomorrow.) 

• For more on designs that may increase power, see Lipsey 

(1990) or McClelland (2000) 

Calculating Sample Size to Give Desired Power: The dependence 

of power on sample size allows us, in principle, to figure out 

beforehand what sample size is needed to detect a specified 

difference, with a specified power, at a given significance level, if 

that difference is really there.  

In practice, details on figuring out sample size will vary from 

procedure to procedure. See the Appendix for discussion of some 

of the considerations involved.  
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Detrimental Effects of Underpowered or Overpowered Studies 

 

The most straightforward consequence of underpowered studies 

(i.e., those with low probability of detecting an effect of practical 

importance) is that effects of practical importance are not detected.  

 

But there is a second, more subtle consequence: underpowered 

studies result in a larger variance of the estimates of the parameter 

being estimated. For example, in estimating a population mean, the 

sample means of studies with low power have high variance; in 

other words, the sampling distribution of sample means is wide.  

 

This is illustrated in the following picture, which shows the 

sampling distributions for a variable with zero mean when sample 

size n = 25 (red) and when n = 100 (blue). The vertical lines 

toward the right of each sampling distribution show the cut-off for 

a one-sided hypothesis test with null hypothesis " = 0 and 

significance level alpha = .05. Notice that  

• The sampling distribution for the smaller sample size (n = 

25) is wider than the sampling distribution for the larger 

sample size ( n = 100). 

• Thus, when the null hypothesis is rejected with the smaller 

sample size n = 25, the sample mean tends to be noticeably 

larger than when the null hypothesis is rejected with the 

larger sample size n = 100.  
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This reflects the general phenomenon that studies with low 

power have a larger chance of having a large sample mean than 

studies with high power. 

 

In particular, when there is a Type I error (falsely rejecting the null 

hypothesis), the effect will appear to be stronger with a large 

sample size (higher power) than with a small sample size (higher 

power). This may suggest an exaggerated effect, or even one that is 

not there. Thus, when studies are underpowered, the literature is 

likely to be inconsistent and often misleading.  

• This problem is increased because of the “File Drawer 

Problem” (to be discussed tomorrow). 
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Overpowered studies waste resources.  

• When human or animal subjects are involved, having an 

overpowered study can be considered unethical.  

o For more on ethical considerations in animal studies, 

see Festing (2010) or Kilkenny et al (2010)  

• More generally, an overpowered study may be considered 

unethical if it wastes resources. 

A common compromise between over-power and under-power is 

to try for power around .80. However, power needs to be 

considered case by case, balancing the risks of Type I and Type II 

errors.  
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IV: COMMON MISTAKES INVOLVING POWER 

 

1. Rejecting a null hypothesis without considering practical 

significance. 

A study with large enough sample size will have high enough 

power to detect minuscule differences that are not of practical 

significance. Since power typically increases with increasing 

sample size, practical significance is important to consider. 
 

2. Accepting a null hypothesis when a result is not statistically 

significant, without taking power into account. 

 

• Since power typically increases with increasing sample size, 

practical significance is important to consider.  

• Looking at this from the other direction: Power decreases 

with decreasing sample size.  

• Thus a small sample size may not be able to detect an 

important difference.  

• If there is strong evidence that the power of a procedure will 

indeed detect a difference of practical importance, then 

accepting the null hypothesis is appropriate. 

o However, it may be better to use a test for equivalence; 

see the Appendix for references. 

• Otherwise “accepting the null hypothesis” is not appropriate 

-- all we can legitimately say then is that we fail to reject the 

null hypothesis. 
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3. Being convinced by a research study with low power. 

 

As discussed above, underpowered studies are likely to be 

inconsistent and are often misleading. 

 

4. Neglecting to do a power analysis/sample size calculation 

before collecting data 

• Without a power analysis, you may end up with a result that 

does not really answer the question of interest. 

• You might obtain a result that is not statistically significant, 

but is not able to detect a difference of practical significance.  

• You might also waste resources by using a sample size that is 

larger than is needed to detect a relevant difference. 

 

5. Neglecting to take multiple inference into account when 

calculating power. 

If more than one inference procedure is used for a data set, then 

power calculations need to take that into account. Doing a 

power calculation for just one inference will result in an 

underpowered study. (More on this tomorrow)  

• For more detail, see Maxwell and Kelley (2011) and 

Maxwell (2004) 
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6. Using standardized effect sizes rather than considering the 

particulars of the question being studied. 

"Standardized effect sizes" (sometimes called "canned" effect 

sizes) are expressions involving more than one of the factors 

that needs to be taken into consideration in considering 

appropriate levels of Type I and Type II error in deciding on 

power and sample size. Examples:  

• Cohen's effect size d is the ratio of the raw effect size 

(e.g., difference in means when comparing two groups) 

and the error standard deviation. But each of these 

typically needs to be considered individually in designing 

a study and determining power; it's not necessarily the 

ratio that's important. (See Appendix) 

• The correlation (or squared correlation) in regression. The 

correlation in simple linear regression involves three 

quantities: the slope, the y standard deviation, and the x 

standard deviation. Each of these three typically needs to 

be considered individually in designing the study and 

determining power and sample size. In multiple 

regression, the situation may be even more complex. 

For specific examples illustrating these points, see Lenth, 

(2000) and (2001)  
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7. Confusing retrospective power and prospective power. 

• Power as defined above for a hypothesis test is also called 

prospective or a priori power.  

o It is a conditional probability, P(reject H0 | Ha), 

calculated without using the data to be analyzed.  

o In fact, it is best calculated before even gathering the 

data, and taken into account in the data-gathering plan. 

• Retrospective power is calculated after the data have been 

collected, using the data.  

• Depending on how retrospective power is calculated, it might 

be legitimate to use to estimate the power and sample size for 

a future study, but cannot legitimately be used as describing 

the power of the study from which it is calculated.   

• However, some methods of calculating retrospective power 

calculate the power to detect the effect observed in the data -- 

which misses the whole point of considering practical 

significance. These methods typically yield simply a 

transformation of p-value. See  Lenth (2000 for more detail. 

• See Hoenig and Heisley (2001) and Wuensch et al (2003) for 

more discussion and further references.  

 

 

 

 

 

 

 

 

 


