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APPENDIX TO DAY 3  
 
Considerations on determining sample size to give desired power:  (pp. 23, 29) 
 

• The difference used in calculating sample size  (i.e., the specific alternative used 
in calculating sample size) should be decided on the base of practical significance 
and/or "worst case scenario," depending on the consequences of decisions. 

• Even when the goal is a hypothesis test, it may be wise to base the sample size on 
the width of a confidence interval rather than just ability to detect the desired 
difference: Even when power is large enough to detect a difference, the 
uncertainty, as displayed by the confidence interval, may still be too large to make 
the conclusions very credible to a knowledgeable reader. 

• Determining sample size to give desired power and significance level will usually 
require some estimate of parameters such as variance, so will only be as good as 
these estimates.  

o These estimates usually need to be based on previous research, experience 
of experts in the field, or a pilot study.  

o In many cases, it may be wise to use a conservative estimate of variance 
(e.g., the upper bound of a confidence interval from a pilot study), or to do 
a sensitivity analysis to see how the sample size estimate depends on the 
parameter estimate. See Lenth (2001) for more details. 

•  Even when there is a good formula for power in terms of sample size, "inverting" 
the formula to get sample size from power is often not straightforward 

o This may require some clever approximation procedures.  

o Such procedures have been encoded into computer routines for many (not 
all) common tests. 

o See Russell Lenth’s website or John C. Pezzullo’s Interactive Statistics 
Pages for links to a number of online power and sample size calculators. 

o Caution: If you use software routines to calculate power, be sure it 
calculates a priori power, not retrospective (or observed) power. (See 
below) 

• Good and Hardin (2006, p. 34) report that using the default settings for power and 
sample size calculations is a common mistake made by researchers.  

•  For discrete distributions, the "power function" (giving power as a function of 
sample size) is often saw-toothed in shape.  
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o A consequence is that software may not necessarily give the optimal 
sample size for the conditions specified.  

o Good software for such power calculations will also output a graph of the 
power function, allowing the researcher to consider other sample sizes that 
might give be better than the default given by the software.  

References for tests of equivalence (p. 27): 

• Hoenig, John M. and Heisey, Dennis M. (2001 
• Graphpad.com, Statistical Tests for Equivalence, 

http://www.graphpad.com/library/biostatsspecial/article_182.htm 
• Lauchenbruch, P. A. (2001) 

Note regarding Cohen’s d (p. 29): 
 
Figure 1 of Browne (2010) shows that, for the two-sample t-test, Cohen's classification of 
"large" d as 0.8 still gives substantial overlap between the two distributions being 
compared; d needs to be close to 4 to result in minimal overlap of the distributions.  
 
Suggestions for dealing with the File Drawer Problem: (p. 36) 
 
Suggestions for researchers:  

• Carefully review the literature and any relevant research registries before you 
embark on new research. 

• Take the file drawer problem into account when writing a literature review. 
• These considerations are especially important when conducting a meta-analysis. 
• Make every effort to publish good research, even if results are not statistically 

significant, are not practically significant, or do not meet hopes or expectations. 
 
Suggestion for reviewers, editors, etc: 

• Accept papers on the quality of the research and writing, not on the basis of 
whether or not the results are statistically or practically significant or whether or 
not they are as expected.  

• If necessary, work to implement this as the policy of the journals and professional 
societies that you are affiliated with. 

 
Suggestions for consumers of research: 

• Do not let a single research result convince you of anything. 
• If you are reading a meta-analysis, check whether and how well the authors have 

taken the file-drawer problem into account.  
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