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Course Description: We often hear results of studies that appear 

to contradict studies that were widely publicized just a couple of 

years ago. Medical researcher, John P. Ioannidis has asserted that 

most claimed research findings are false. His arguments emphasize 

the frequency and consequences of misunderstanding and misuses 

of statistical inference techniques that are often passed down from 

teacher to student or from colleague to colleague. In some cases, 

policies based on these misunderstandings have become 

institutionalized. This workshop will discuss some of these 

misunderstandings and misuses, including 

• The File Drawer Problem (Publication Bias) 

• Multiple Inference 

• Data Snooping 

• Ignoring Model Assumptions. 

To aid understanding of these mistakes, about half of the course 

time will be spent deepening understanding of the basics of 

statistical inference beyond the level of introductory statistics. 

 

Supplemental materials are available at the course website at 

http://www.ma.utexas.edu/users/mks/CommonMistakes2012/com

monmistakeshome2012.html. These provide: 

• Elaboration of some items discussed only briefly in class 

• Specific suggestions for what teachers, readers of research, 

researchers, referees, reviewers, and editors can do to avoid 

or deal with these mistakes. 

• Additional references 

 

Additional information on this general topic is available at the 

instructor’s website Common Misteaks Mistakes in Using Statistics 

at 

http://www.ma.utexas.edu/users/mks/statmistakes/TOC.html  

(or just Google “"common mistakes in statistics") 
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I. MISTAKES INVOLVING UNCERTAINTY 

 

Common Mistake: Expecting Too Much Certainty  

 

If it involves statistical inference, it involves uncertainty! 

 
Humans may crave absolute certainty; they may aspire to it; 

they may pretend ... to have attained it. But the history of 

science … teaches that the most we can hope for is successive 

improvement in our understanding, learning from our 

mistakes, … but with the proviso that absolute certainty will 

always elude us. 

       Astronomer Carl Sagan, The Demon-Haunted World: 

Science as a Candle in the Dark (1995), p. 28. 
 

… to deal with uncertainty successfully we must have a kind 

of tentative humility. We need a lack of hubris to allow us to 

see data and let them generate, in combination with what we 

already know, multiple alternative working hypotheses. 

These hypotheses are then modified as new data arrive. The 

sort of humility required was well described by the famous 

Princeton chemist Hubert N. Alyea, who once told his class, 

“I say not that it is, but that it seems to be; as it now seems to 

me to seem to be.” 

 Statistician Howard Wainer, last page of Picturing the 

Uncertain World (2009) 

 

(More quotes on website!) 
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General Recommendations Regarding Uncertainty 

 

Recommendation for reading research that involves statistics:  

 

• Look for sources of uncertainty. 

 

Recommendations for planning research:  

 

• Look for sources of uncertainty.  

• Wherever possible, try to reduce or take into account 

uncertainty. 

 

Recommendations for teaching and writing:  

 

• Point out sources of uncertainty.  

• Watch your language to be sure you don’t falsely suggest 

certainty. 

Example: Do not say that a result obtained by statistical 

inference is true or has been proved; instead say, e.g., 

that the data support the result. 

 

Recommendation for research supervisors, reviewers, editors, 

and members of IRB’s:  

 

• Look for sources of uncertainty. 

• If the researcher has not followed the recommendations 

above, send the paper or proposal back for appropriate 

revisions. 
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Terminology Inspired Confusions Involving Uncertainty: 

 

Many words are used to indicate uncertainty, including: 

 

 Random 

 Variability/variation 

 Fuzziness 

 Noise 

 Probably/probability/probable/improbable 

 Possibly/possible/possibility 

 Plausibly/plausible 

 

Moreover, these and other words indicating uncertainty may be 

used with different meanings in different contexts. 

 

Examples: 

 

1. Some people (e.g., in environmental studies) distinguish 

between “uncertainty” and “variability”:  

 

• Variability refers to natural variation in some quantity  

o May be called aleatory (from Lat. aleator, gambler) 

uncertainty in some fields 

• Uncertainty refers to the degree of precision with which a 

quantity is measured.  

o May be called epistemic uncertainty or fuzziness in 

some fields 
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Environmental example: 

• The amount of a certain pollutant in the air is variable, 

since it varies from place to place and from time to time.  

• The uncertainty in the amount of that pollutant present in a 

particular place at a particular time depends on the quality, 

type, and presence or absence of the instruments used to 

measure it. 

 

     Other people may consider both of these as instances of 

uncertainty, or as instances of variability. 

 

2. Noise is sometimes used to mean something similar to the use of 

“uncertainty” in Example 1, but is sometimes used to refer to 

variability. The latter use can often be confusing. 

 

    Example: In neural imaging, MRI scans produce waveforms that 

are used to obtain information about what is happening in a 

person’s brain.  

• Extraneous factors (such as the person’s slight body 

movements, or vibration of the machine) produce noise in 

the waveform. 

• But there is also variability from person to person that is 

reflective of different brain activity. 

    

 3. The everyday and technical meanings of “random” are 

different. (More later.) 

 

 

For more examples of terminology-inspired confusions in 

statistics, see Wainer (2011) 

 

 

 

 

 8 

Common Mistakes Involving Causality and Uncertainty 

 

1. Confusing correlation and causation. 

 

Examples: 

 

i. Elementary school students' shoe sizes and their scores on a 

standard reading exam are correlated. Does having a larger shoe 

size cause students to have higher reading scores?  

 

ii. Suppose research has established that college GPA is related to 

SAT score by the equation 

 GPA = ! + "SAT, 

and " > 0. Can we say that an increase of one point in SAT scores 

causes, on average, an increase of ! points in college GPA? 

 

2. Interpreting causality deterministically when the evidence is 

statistical. 

 
After pointing out problems such as confusing correlation and 

causation, most statistics textbooks include a statement such as: 

 

"To establish causality, we need to use a randomized 

experiment."  

 

Suppose a well planned, well implemented, carefully analyzed 

randomized experiment concludes that a certain medication is 

effective in lowering blood pressure. Would this be justification for 

telling someone, “This medication will lower your blood pressure? 
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II. MISTAKES INVOLVING PROBABILITY 

 

"It is his knowledge and use of the theory of probability that 

distinguishes the statistician from the expert in chemistry, 

agriculture, bacteriology, medicine, production, consumer 

research, engineering, or anything else." 

   Statistician W. Edwards Deming 

 

Uncertainty can often be "quantified" 

• i.e., we can talk about degrees of certainty or uncertainty. 

• This is the idea of probability: a higher probability expresses 

a higher degree of certainty/a lower degree of uncertainty 

that something will happen. 

• Statistical inference techniques are based on probability. 

 

Dictionary definition: 

• American Heritage Dictionary Definition 3: “Math. A 

number expressing the likelihood of occurrence of a specific 

event, such as the ratio of the number of experimental results 

that would produce the event to the total number of results 

considered possible.” 

• AHD Definition 1 of Likelihood:  “The state of being likely 

or probable; probability.” 

 

Compare: 

• What is time? 

• What is a point? 
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Differing Perspectives on Probability 

 

Some confusions involving probability and statistics involve 

confusing three perspectives on probability: 

 

• Classical (“A priori” or “theoretical”) 

• Empirical (“A posteriori” or “frequentist” or “classical”) 

• Subjective 

 

Terminology: The things we consider the probabilities of are called 

events. 

 

Examples:  

• The event that the number showing on a die we have 

rolled is 5. 

• The event that it will rain tomorrow. 

• The event that someone in a certain group will contract a 

certain disease within the next five years. 
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Classical (“A Priori” or “Theoretical”) Perspective 

 

• Situation: a non-deterministic process (“random process”) 

with n equally likely outcomes. 

• e.g., toss a fair die: Six equally likely outcomes, 

• P(A) (“the probability of event A”) is defined to be m/n, 

where A is satisfied by exactly m of the n outcomes 

• e.g., toss a fair die; A = an odd number comes up ~~> P(A) = 

3/6. 

 

Pros and Cons of Classical Probability 

 

• Conceptually simple for many situations. 

• Doesn’t apply when outcomes are not equally likely. 

• Doesn’t apply when there are infinitely many potential 

outcomes 
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Empirical (“A Posteriori” or “Frequentist” or “Classical”) 

Perspective 

 

• Consider a process that we can imagine performing 

repeatedly (e.g., tossing a die); we consider an event A that 

can be described in terms of the results of the process (e.g., 

“the number that comes up is less than 4”) 

• P(A) is defined to be the limiting value, as we perform the 

process more and more times, of the ratio 

  

! 

Number of times A occurs

Number of times process is repeated
 

• E.g., toss a fair die; A = six lands up 

• E.g., toss a die that is suspected of not being fair; A = six 

lands up. 
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Illustration of the Empirical Perspective of Probability: The graph 

shows the results of a simulation of tossing a die 1200 times, 

recording after each toss the proportion of times “1” comes up on 

the (simulated) die. 

 

 
• The horizontal axis shows the number of tosses of a fair die. 

• The vertical axis shows the proportion of those tosses that 

came up 1.  

• The trend of the graph is that as the number of tosses 

increases, the proportion of ones approaches the true 

probability of 1/6 = 0.16666... .  

• Notice that the zeroing in on the true value is not steady -- in 

this particular simulation, there is some moving upward from 

800 to 1000.  

• If we increased the number of tosses to 2000, 3000, etc., we 

would expect the calculated proportions to vary less and less 

from the true value.  
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Pros and Cons of Empirical Probability 

 

• Covers more cases than classical. 

• Intuitively, agrees with classical when classical applies. 

• Repeating the identical experiment an infinite number of 

times (sometimes even twice) is physically impossible. 

• How many times must we perform the process to get a good 

approximation to the limiting value? 

 

The empirical view of probability is the one that is used in most 

commonly used statistical inference procedures. These are called 

frequentist statistics. 
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Subjective Perspective 

 

• An individual’s personal measure of belief that the event will 

occur. 

• e.g., P(the stock market will go up tomorrow). 

• Needs to be “coherent” to be workable.  

o e.g., P(stock market goes up tomorrow) = .6 and 

P(stock market goes down tomorrow) = .7 are 

inconsistent. 

 

Pros and Cons of Subjective Probability 

 

• Applicable in situations where other definitions are not. 

• Fits intuitive sense of probability. 

• Can be considered to extend classical and empirical views. 

• Can vary from individual to individual. 

• Requires “coherence” conditions; are people always that 

rational? 

 

The subjective perspective of probability fits well with Bayesian 

statistics, which are an alternative to the more common frequentist 

statistical methods. This course will mainly focus on frequentist 

statistics. 
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Unifying Perspective: Axiomatic Model of Probability 

 

• The coherence conditions needed for subjective probability 

can be proved to hold for the classical and empirical 

definitions.  

• The axiomatic perspective codifies these coherence 

conditions, so can be used with any of the above three 

perspectives. 

• See Appendix for more details 
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Misunderstandings Involving Probability 

 

… misunderstanding of probability, may be the greatest of all 

general impediments to scientific literacy.  

Stephen Jay Gould, Dinosaur in a Haystack  

 

Common misunderstanding: If there are only two possible 

outcomes, and you don’t know which is true, the probability of 

each of these outcomes is ". 

 

Possible contributing cause: Many students only see the Classical 

perspective, where outcomes have equal probabilities. 

 

Teachers take heed! 
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Common misunderstanding: Confusing the “reference category” 

 

Example (Gigerenzer et al, 2007): A physician may tell a patient 

that if he takes a certain antidepressant, his chance of developing a 

sexual problem is 30% to 50%.  

• The patient may interpret that as saying that in 30% to 50% 

of the occasions on which he wishes to have sex, he will have 

a problem.  

• But the physician means that 30 to 50% of patients who take 

the medication develop a sexual problem. 

 

The intended “reference category” (or “population”) is “patients 

who take the medication,” but the patient heard “occasions on 

which he wishes to have sex.” 

 

Suggestions:  

• In reading, be careful to interpret the reference category from 

context – and remain uncertain if you can’t.  

• In writing, be very careful to make the reference category 

clear. In particular, avoid saying, e.g., “your chances …” 

when the reference category is a population of people. 
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Misunderstandings Involving Conditional Probabilities 

 

Conditional probability: A probability with some condition 

imposed.  

 

Examples: 

• The probability that a randomly chosen person with low bone 

density will have a hip fracture in the next five years. (“Low 

bone density” is the condition.) 

• The probability that a person who scores below 400 on the 

SAT Math subject area exam will pass Calculus I. (“Scores 

below 400 on the SAT Math subject area exam” is the 

condition.) 

 

Note: In these and many other examples, a conditional probability 

can be thought of as restricting interest to a certain subpopulation. 

 

 e.g., in the above examples --- 

 

 

 

Notation: 

 P(Event | Condition), read as  

  “The probability of Event given Condition”  

 

 e.g., in the above examples --- 
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Conditional probabilities are very common. For example, we may 

talk about the probability of having a heart attack in the next five 

years for various conditions (subpopulations), such as: 

 Male 

 Female 

 Male over 65 

 Female with high cholesterol 

 

Common mistake: Ignoring the condition 

 

Example: A study of a cholesterol-lowering medication includes 

only men between the ages of 45 and 65 who have previously had 

a heart attack. The results give an estimate of the probability of the 

effectiveness of the medication for people in the group studied – 

that is, the conditional probability 

  

P(medicine effective| male between the ages of 45 and 65 

who have previously had a heart attack) 

 

How helpful would this study be in deciding whether or not to 

prescribe the medication to a woman who is 75 years old and has 

no previous record of heart attacks? 

 

Note: Ignoring the condition is one form of extrapolation: applying 

or asserting a result beyond the conditions under which it has been 

studied. (More on this later.) 

 

 

 

 

 

 

 

 



 21 

Common misunderstanding: Confusing a conditional probability 

and the reverse (also called inverse) probability. 

 

In the notation P(E|F), the condition F is also an event, so it often 

makes sense to talk about P(F|E). However, these are different. 

 

Example: One situation where this confusion is particularly 

common is in reference to medical diagnostic tests. These are 

usually not perfect, so results are called “positive” and “negative” 

rather than “has disease” and “does not have disease”. It is then 

important to consider conditional probabilities such as  

 
 Sensitivity  = P(tests positive | has the disease) 

  i.e., the probability that a person tests positive if the  

  disease is present 

and 

 Positive predictive value = P(has the disease | tests positive) 

  i.e., the probability that someone has the disease if they  

  test positive  

 

These conditional probabilities are usually not the same. In fact, 

the sensitivity for a test can be very high (e.g., 95% or 99%), but 

the positive predictive value for that same test can be very low 

(e.g., 40% or less). 

 

Which of these two conditional probabilities is of most interest to a 

patient who tests positive? 

 

(More detail in appendix) 
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III. CONFUSIONS INVOLVING THE WORD “RANDOM” 

 

Dictionary vs Technical Meanings 

 

The word “random” has various related but not identical technical 

meanings in statistics.  

• The technical meaning may depend on the context. 

• In some cases the exact technical meaning is hard to define 

precisely without getting so technical as to lose many people. 

• In some cases, the everyday meaning is a pretty good guide, 

whereas in other cases, it can cause misunderstandings. 

• The common element is that there is some degree of 

uncertainty (in particular, indeterminacy) involved.  

 

The everyday (first) definitions of “random” from a couple of 

dictionaries: 

"Having no specific pattern or objective; haphazard" (The 

American Heritage Dictionary, Second College Edition, 

Houghton Mifflin, 1985) 

"Proceeding, made, or occurring without definite aim, reason, 

or pattern (Dictionary.Com, 

http://dictionary.reference.com/browse/random, accessed 

11/19/09) 

 

Specific technical uses of “random” include the phrases: 

 A. Random process 

 B. Random sample 

 C. Random variable 
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A. Random Processes 

 

A random process may be thought of as a process where the 

outcome is probabilistic (also called stochastic) rather than 

deterministic in nature; that is, where there is uncertainty as to the 

result. 

 

Examples:  

1. Tossing a die – we don’t know in advance what number will 

come up. 

2. Flipping a coin – if you carefully enough devise an apparatus 

to flip the coin, it will always come up the same way. 

However, normal flipping by a human being can be 

considered a random process. 

3. Shaking up a collection of balls in a hat and then pulling out 

one without looking. 

 

Caution: All the examples above may appear to be situations 

where the outcomes have equal probabilities. But consider 

1. A die that is not fair – e.g., 2 comes up twice as often as 3 

2. A coin that is not fair – e.g., heads comes up twice as often 

as tails 

3. A collection of balls not all of the same size or weight – you 

are more likely to pick out large balls than small ones, or 

light ones than heavy ones. 
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B. Random Samples 

 

Definition and Common Misunderstandings: 

 

A random sample can be defined as one that is generated by a 

random process. Thus, “random sample” really means “randomly 

chosen sample”. 

 

Common confusion: The everyday definition of random prompts 

many people to believe that a random sample does not have a 

pattern.  

• This is false – random samples may indeed display patterns. 

• For example, it is possible for a random (i.e., chosen by a 

random process) sequence of six coin tosses to have the 

pattern HTHTHT, or the pattern HHHTTT, etc. 

• In fact, there is no way we can tell from looking at the sample 

whether or not it qualifies as a random sample. 

 

Common myth: Many people believe that a random sample is 

representative of the population from which it is chosen.  

• This is false - a random sample might, by chance, turn out to 

be anything but representative.  

• For example, a random sample of five people from a group 

might turn out to consist of the tallest five people in the 

group.   

• If you find a book or web page that gives this reason, apply 

some healthy skepticism to other things it claims. 

We will discuss later why random samples are important. 
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Preliminary Definition of Simple Random Sample 

 

The following definition (from Moore and McCabe, Introduction 

to the Practice of Statistics, 5
th

 edition) is good enough for many 

practical purposes: 

 

"A simple random sample (SRS) of size n consists of n 

individuals from the population chosen in such a way that 

every set of n individuals has an equal chance to be the 

sample actually selected." 

 
Here, population refers to the collection of people, animals, 

locations, etc. that the study is focusing on.  

 

Examples: 

1. In a medical study, the population might be all adults over 

age 50 who have high blood pressure.  

2. In another study, the population might be all hospitals in the 

U.S. that perform heart bypass surgery.  

3. If we were studying whether a certain die is fair or weighted, 

the population would be all possible tosses of the die.  

In Example 3, it’s fairly easy to get a simple random sample: Just 

toss the die n times, and record each outcome.  

 

Selecting a simple random sample in examples 1 and 2 is much 

harder.  
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Difficulties in Obtaining a Simple Random Sample 

A good way to select a simple random sample for Example 2: 

1) Obtain or make a list of all hospitals in the U.S. that perform 

heart bypass surgery. Number them 1, 2, ... up to the total 

number M of hospitals in the population. (Such a list is called 

a sampling frame.) 

2) Use a random number generating process (i.e., equivalent to 

the process of selecting balls used in some lotteries) to obtain 

a simple random sample of size n from the population of 

integers 1, 2, ... , M.   

3) The simple random sample of hospitals would consist of 

those hospitals in the list corresponding to the numbers in the 

SRS of numbers. 

 

In theory, the same process could be used in Example 1.  

• However, obtaining the sampling frame would be much 

harder -- probably impossible.  

• So some compromises may need to be made.   

• Unfortunately, these compromises can easily lead to a sample 

that is biased (more later) or otherwise not close enough to 

random to be suitable for the statistical procedures used. 

 

Caution: Even the sampling procedure described above is a 

compromise and may not be suitable in some situations.  
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Other Types of Random Samples (briefly) 

 

There are various types of random samples (also called probability 

samples) besides simple random samples.  

• These may be appropriate in some studies. 

• But when they are used, the correct method of statistical 

analysis will differ from the method for a simple random 

sample. Using a method requiring a simple random 

sample with a different type of random sample is a 

common mistake in using statistics. 

• Examples include stratified random samples and cluster 

samples. 

o See the Appendix for further details 
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C. Random Variables  

 

In most applications, a random variable can be thought of as a 

variable that depends on a random process.  

 

Examples: 

1. Toss a die and look at what number is on the side that lands up.  

• Tossing the die is an example of a random process;  

• The number on top is the value of the random variable. 

 

2. Toss two dice and take the sum of the numbers that land up.  

• Tossing the dice is the random process;  

• The sum is the value of the random variable.   

 

3. Toss two dice and take the product of the numbers that land up.  

• Tossing the dice is the random process;  

• The product is the value random variable. 

Examples 2 and 3 together illustrate:  

The same random process can be involved in two different 

random variables. 
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4. Randomly pick (in a way that gives each student an equal 

chance of being chosen) a UT student and measure their height. 

• Randomly picking the student is the random process. 

• The student’s height is the value of the random variable. 

 

5. Randomly pick (in a way that gives each student an equal 

chance of being chosen) a student in a particular UT class and 

measure their height.  

• Picking the student is the random process. 

• The student’s height is the value of the random variable. 

Examples 4 and 5 illustrate:  

Using the same variable (in this case, height) but different 

random processes (in this case, choosing from different 

populations) gives different random variables.  

Confusing two random variables with the same variable but 

different random processes is a common mistake. 
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6. Measure the height of the third student who walks into the class 

in Example 5.  

• In all the examples before this one, the random process was 

done deliberately. 

• In Example 6, the random process is one that occurs 

naturally.  

• Because Examples 5 and 6 depend on different random 

processes, they are different random variables. 

 

7. Toss a coin and see whether it comes up heads or tails.  

• Tossing the coin is the random process. 

• The value is heads or tails.  

• Example 7 shows that a random variable doesn't necessarily 

have to take on numerical values.  
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Probability Distributions:  

 

Recall: 

• “Random” indicates uncertainty. 

• Probability quantifies uncertainty 

 

For random variables, probability enters as a probability 

distribution: 

• Typically, some values (or ranges of values) of a random 

variable occur more frequently than others. 

• For example, if we are talking about heights of university 

students, heights of around 5' 7" are much more common that 

heights of around 4' or heights around 7'.  

• In other words, some values of the random variable occur 

with higher probability than others.  

• This can be represented graphically by the probability 

distribution of the random variable.  
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Example: 

 

 
 

• The possible values for the random variable are along the 

horizontal axis.  

• The height of the curve above a possible value roughly tells 

how likely the nearby values are.  

• This particular distribution tells us that values of the random 

variable around 2 (where the curve is highest) are most 

common, and values greater than 2 become increasingly less 

common, with values greater than 14 (where the curve is 

lowest) very uncommon.  

• More precisely, the area under the curve between two values 

a and b is the probability that the random variable will take 

on values between a and b.  

• In this example, we can see that the value of the random 

variable is much more likely to lie between 2 and 4 (where 

the curve is high, hence has a lot of area under it) than 

between 12 and 14 (where the curve is low, and hence has 

little area under it). 
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Question: What is the total area under a probability distribution 

curve? 

 

 Why? 

 

Common mistake: Confusing different normal distributions. 

 

Example 1: Three normal distributions, same scale 

 

  

Each distribution has mean 0. 

• Blue has standard deviation 1 

• Red has standard deviation 0.5 

• Orange has standard deviation 0.25 

 

What’s the pattern and why does it occur? 
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Example 2: The same normal distribution, three different “aspect 

ratios” 
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IV. BIASED SAMPLING AND EXTRAPOLATION 

 

A sampling method is called biased (or often, systematically 

biased) if it systematically favors some outcomes over others. 

 

• Systematic bias can be intentional, but often is unintentional.  

• Systematic bias is sometimes called ascertainment bias, 

especially in medical or biological studies. 

 

Inferences from a systematically biased sample are not as 

trustworthy as conclusions from a truly random sample, so need to 

be taken with a large grain of salt. 
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Some Randomness Does Not Ensure Lack of Systematic Bias 

 

The following example shows how a sample can be systematically 

biased, even though there is some randomness in the selection of 

the sample. 

 

Example: Telephone sampling is common in marketing surveys.  

• A simple random sample might be chosen from the sampling 

frame consisting of a list of telephone numbers of people in 

the area being surveyed.  

• This method does involve taking a simple random sample (of 

telephone numbers), but it is not a simple random sample of 

the target population (households or consumers in the area 

being surveyed.)  

• It will miss people who do not have a phone.  

o It may also miss people who only have a cell phone that 

has an area code not in the region being surveyed.  

o It will also miss people who do not wish to be surveyed, 

including those who monitor calls on an answering 

machine and don't answer those from telephone 

surveyors. 

•  Thus the method systematically excludes certain types of 

consumers in the area.  
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Common Sources of Systematic Bias: 

 

1. Convenience samples:   

• Sometimes it’s not possible or not practical to choose a 

random sample.  

• In those cases, a convenience sample might be used. 

• Sometimes it’s plausible that a convenience sample could be 

considered as a random sample, but often a convenience 

sample is systematically biased. 

•  If a convenience sample is used, inferences are not as 

trustworthy as if a random sample is used. 

 

2. Voluntary response samples:  

• If the researcher appeals to people to voluntarily participate 

in a survey, the resulting sample is called a "voluntary 

response sample."  

• Voluntary response samples are always systematically 

biased:  

o They only include people who choose to volunteer, 

whereas 

o A random sample would need to include people 

whether or not they choose to volunteer.  

• In addition, voluntary response samples typically over-

sample people who have strong opinions and under-sample 

people who don't care much about the topic of the survey.  

• Thus inferences from a voluntary response sample are not as 

trustworthy as conclusions based on a random sample of the 

entire population under consideration. 
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3. Lack of Blinding: When two "treatments" are compared (e.g., 

drugs; surgical procedures; teaching methods), systematic bias can 

sometimes be introduced by the human beings involved, despite 

their best efforts to be objective and unbiased.  

• Thus it is important in these situations to try to make sure 

that no one who might, even unintentionally, influence the 

results knows which treatment each subject is receiving.  

• This is called blinding.  

 

Examples: 

 

A. If two drugs are being compared (or a drug and a placebo), 

blinding involves the following (and possibly more): 

• The two pills need to look alike, so the patient and the 

attending medical personnel don't know which drug the 

patient is taking. 

• If a drug has noticeable side effects and is being compared 

with a placebo, the placebo should have the same side 

effects. 

• The person arranging the randomization (i.e., which 

patient takes which drug) should have no other 

involvement in the study, and should not reveal to anyone 

involved in the study which patient is taking which drug. 

• Anyone evaluating patient outcomes (e.g., examining the 

patient or asking the patient about their symptoms) should 

not know which drug the patient is taking.  
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B. Now suppose that two surgical treatments are being 

compared.  

• It is impossible to prevent the surgeons from knowing 

which surgical treatment they are giving.  

• Thus, total blinding is not possible, and there is the 

possibility that the surgeon's knowledge of which 

treatment is being given might influence the outcome. 

• Sometimes the researchers can partially get around this 

by using only surgeons who genuinely believe that the 

technique they are using is the better of the two.  

! But this may introduce a confounding of 

technique and surgeon characteristics:  

! For example, the surgeons preferring one 

technique might be, as a group, more skilled or 

more experienced or more careful than the 

surgeons preferring the other, or have different 

training that affects the outcome regardless of the 

surgical method. 
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Miscellaneous sources of sampling bias: Sampling bias may 

occur for many reasons, so vigilance is required. 

 

Example: Studies of human genetic variation typically use DNA 

microchips to identify variation in certain genes that are known to 

have different versions. But if the microchip is created to assess 

only certain genes known to vary in a particular population, the 

study will not pick up genes that do not vary in that population but 

vary between that population and others, or within some other 

populations.  

 

For example, a study using a microchip based on genes known to 

vary in European populations may miss variation between 

European and Asian populations and between different Asian 

populations.  (Jobling and Tyler-Smith, 2003, Box 1, p. 600 ) 
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Extrapolation 

 

 In statistics, drawing a conclusion about something beyond the 

range of the data is called extrapolation.  

• Drawing a conclusion from a systematically biased sample is 

one form of extrapolation:  

o Since the sampling method systematically excludes 

certain parts of the population under consideration, the 

inferences only apply to the subpopulation that has 

actually been sampled.  

• Extrapolation also occurs if, for example, an inference based 

on a sample of university undergraduates is applied to older 

adults or to adults with only an eighth grade education. 

• Extrapolation is a common mistake in applying or 

interpreting statistics.  

• Because of the difficulty or impossibility of obtaining good 

data, extrapolation is sometimes the best we can do, but it 

always needs to be taken with at least a grain of salt – i.e., 

with a large dose of uncertainty. 
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V. PROBLEMS INVOLVING CHOICE OF MEASURES 

 

Choosing Outcome (and Predictor) Measures (Variables) 

 

Example 1: A study is designed to measure the effect of a 

medication intended to reduce the incidence of osteoporotic 

fractures. Subjects are randomly divided into two groups. One 

group takes the new medication, the other, a placebo or an existing 

medication. What should be measured to compare the two groups? 

 Bone density? 

 Number of subjects having hip fractures? 

 Number of hip fractures experienced by subjects? 

 Number of subjects who have vertebral fractures? 

 Number of vertebral fractures experienced by subjects? 

 Number of subjects who experience any fracture? 

 Number of fractures of all kinds experienced by subjects? 

 More than one of these? 

Something else? 

 

Note:  

• All of these involve random variables – e.g, bone density, 

number of hip fractures, mobility 

• Measures such as bone density and body mass index are 

sometimes called markers or proxy measures or surrogates. 
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Example 2: The official US Unemployment Rate is defined as 

"Total unemployed persons, as a percent of the civilian labor 

force."  

• This measure of unemployment depends on the definitions of 

"unemployed" and "civilian labor force".  

• For example, the official definition of "employed persons" 

includes "All persons who did at least 15 hours of unpaid 

work in a family-owned enterprise operated by someone in 

their household."  

• Other countries use different definitions of unemployment. 

• In 1976, the U.S. Department of Labor introduced several 

"Alternative measures of labor underutilization" and 

regularly publishes these other measures of unemployment 

rate. 
 

(For more examples and references for the various “measures of 

labor underutilization,” see 

http://www.ma.utexas.edu/users/mks/statmistakes/Outcomevariabl

es.html)  

 

Comments: Choice of measure is often difficult; it may involve 

compromises. For example: 

• A good measure may be harder to obtain than a proxy 

measure; the researchers need to weigh the expense and 

benefits of each choice. 

• Changing a measure that has been used in past research 

because a better measure is feasible may prevent 

comparisons of trends in the past and future. 

• Statistical properties of the measure are also relevant; see 

Senn and Julious (2009) for discussion of this for measures 

used in clinical trials, and for further references. 
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Suggestions for consumers of research: 

• Carefully read the definitions of measures.  

o They may not be what you might think (e.g., 

unemployment rate). 

• Think about whether the measures used really measure what 

you are interested in (e.g., bone density vs. incidence of 

fractures) 

• Be cautious in drawing conclusions involving more than one 

study – if the measures are not the same, comparisons of 

results may not be valid.   

 

Suggestions for researchers:  

• Think carefully about the measures you use. Ask others to 

critique your choices and reasoning. 

• Be sure to give a precise definition of each measure you use.  

• Explain why you chose the measures you did. 

• State clearly any cautions needed in using your measures. 

 

Suggestion for reviewers, supervisors, editors, etc: 

• Have the researchers done all of the above? Or have they left 

the reader with more uncertainty than they should? 
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Asking Questions (if time permits; more in Appendix) 

 

Asking people questions can raise many problems. Two main types 

of problems: 

• Questions may be ambiguous.  

o The responder may interpret them differently than the 

questioner. 

o  Different responders may have different 

interpretations. 

• The wording or sequencing of questions can influence the 

answers given. 

Examples: 

 

1. The developers of a questionnaire to study the incidence of 

disabilities tried to write a question to detect psychosis. They tried, 

“Do you see things other people don't see or hear things other 

people don't hear?”  

• In testing the question, they found that non-psychotic people 

would answer yes to the question, explaining that they had 

unusually good vision, or excellent hearing. 

 

2. In developing a survey on housing demand, researchers found 

that if they asked questions about specific amenities before asking 

a question on overall satisfaction, the overall satisfaction rating 

was lower than if these more specific questions were asked later 

than the overall satisfaction question.  

 
(More details and suggestions in Appendix) 
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Choosing Summary Statistics 

 

• Many of the most common statistical techniques (e.g., one 

and two sample t-tests, linear regression, analysis of 

variance) concern the mean.  

• In many circumstances, focusing on the mean is appropriate. 

• But there are also many circumstances where focusing on the 

mean can lead us astray. Some types of situations where this 

is the case: 
1. When Variability Is Important 

2. Skewed Distributions  

3. Ordinal Random Variables  

4. Unusual Events  
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1. When Variability Is Important 

 

Example: The target range for blood glucose (BG, in millimoles 

per liter) is 3.9 to 10. The graph below shows the distribution of 

blood glucose for two hypothetical patients.  

• Both patients have mean BG 7.  

• The distribution for Patient 1 (blue) has standard deviation 

0.5. 

• The distribution for Patient 2 (red) has standard deviation 1.8. 

• Patient 1 is in good shape. 

• Patient 2 is in trouble.   
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Standard deviation is one common measure of variability. 

• Depending on the situation, other measures of variability may 

be more appropriate, as discussed below. 

 

Focusing just on the mean and ignoring variability is a common 

mistake, particularly in applying results.  
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2. Skewed Distributions (as time permits) 

  

 A skewed distribution is one that is bunched up on one side 

and has a  “tail” on the other.  When a distribution is skewed, care 

needs to be given to choosing both an appropriate measure of 

center and an appropriate measure of spread. 

 

Measure of center 

 When we focus on the mean of a variable, we’re usually 

trying to focus on what happens "on average," or perhaps 

"typically".  

• The mean does this well when the distribution is 

symmetrical, and especially when it is "mound-shaped," such 

as a normal distribution.  

o For a symmetrical distribution, the mean is in the 

middle. 

o If a symmetrical distribution is also mound-shaped, 

then values near the mean are typical.  

• But if a distribution is skewed, then the mean is usually not in 

the middle.  

o In this case, the median is a better measure of “typical”. 

o See appendix for elaboration. 

o Note: For a symmetrical distribution, such as a normal 

distribution, the mean and median are the same. 
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Many distributions that occur in practical situations are skewed, 

not symmetric. 

Examples:  

1. Suppose a friend is considering moving to Austin and asks you 

what houses here typically cost.  

• Would you tell her the mean or the median house price?  

• [Hint: Think Dellionaires] 

 

2. In fact, blood glucose typically has a skewed (to the right) 

distribution rather than the normal distribution shown in the 

example above. 

 

3. See Limpert and Stahel (1998) for more examples. 
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Measure of spread 

For a normal distribution, the standard deviation is a very 

appropriate measure of variability (or spread) of the distribution.   

• If you know a distribution is normal, then knowing its mean 

and standard deviation tells you exactly which normal 

distribution you have.  

But for skewed distributions, the standard deviation gives no 

information on the asymmetry.  

 

• For a skewed distribution, it’s usually better to use the first 

and third quartiles, since these will give some sense of the 

asymmetry of the distribution. 
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Other problems arising with skewed distributions 

 

• Most standard statistical techniques focus on the mean and 

also assume that the random variable in question has a 

distribution that is normal.  

• Many still give pretty accurate results if the random variable 

has a distribution that is not too far from normal.  

• But many common statistical techniques are not valid for 

strongly skewed distributions.  

• Applying techniques intended for normal distributions to 

strongly skewed distributions is a common mistake. 

• This is one example of a more general common mistake of 

ignoring what are called model assumptions. (More on this 

tomorrow.) 
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Possible remedies: 

i. Always plot the data before applying a statistical test that 

assumes the variable has a normal distribution 

• If the data are strongly skewed, use one of the techniques 

below. 

ii. Consider taking logarithms or applying another transformation 

to the original data 

• Many skewed random variables that arise in applications 

are lognormal. 

o This means that the logarithm of the random variable is 

normal. 

o See Limpert and Stahel (1998) for examples and 

elaboration. 

o Hence most common statistical techniques can be 

applied to the logarithm of a lognormal (or 

approximately lognormal) variable.  

o However, doing this may require some care in 

interpretation. There are three common routes to 

interpretation when dealing with logs of variables. (For 

more details, see 

http://www.ma.utexas.edu/users/mks/statmistakes/skew

eddistributions.html) 

• For some skew distributions that are not lognormal, another 

transformation (e.g., square root) can yield a distribution that 

is close enough to normal to apply standard techniques. 

However, interpretation will depend on the transformation 

used. 
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iii. Try non-parametric techniques 

• These include a variety of permutation tests (also called 

randomization tests) as well as some standard named tests 

such as the Wilcoxon signed-rank test. 

• Permutation tests can also sometimes be “made to order” 

when an unusual test statistic is more appropriate than a 

standard one for the question under study.  

• For more information, see Moore (2010), Eddington (1995), 

Good (2005)  

 

iv. If regression is appropriate, try quantile regression 

• Standard regression estimates the mean of the conditional 

distribution (conditioned on the values of the predictors) of 

the response variable.  

• Quantile regression is a method for estimating conditional 

quantiles (i.e., percentiles), including the median.  

• For more on quantile regression, see Roger Koenker’s 

Quantile Regression website at 

http://www.econ.uiuc.edu/~roger/research/rq/rq.html  
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3. Ordinal Variables (if time permits) 

 

An ordinal variable is a categorical variable for which the possible 

values are ordered. Ordinal variables can be considered “in 

between” categorical and quantitative variables. 

 

Example: Educational level might be categorized as 

 1: Elementary school education 

 2: High school graduate 

 3: Some college 

 4: College graduate 

 5: Graduate degree 

 

• In this example (and for many ordinal variables), the 

quantitative differences between the categories are uneven, 

even though the differences between the labels are the same.  

• Thus it does not make sense to take a mean of the values.  

• Common mistake: Treating ordinal variables like 

quantitative variables without thinking about whether this is 

appropriate in the particular situation at hand. 

• For example, the “floor effect” can produce the appearance 

of interaction when using Least Squares Regression, when no 

interaction is present. 

o See Agresti (2010) for this example and for some 

methods that are appropriate for ordinal data. 

• Permutation tests (also known as randomization tests) can 

also be used on ordinal data (See references on previous 

page.) 
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4. Unusual Events (if time permits) 

 

If the research question being studied involves unusual events, 

neither the mean nor median is adequate as a summary statistic. 

 

Examples: 

 

1. If you are deciding what capacity air conditioner you need, the 

average yearly (or even average summer) temperature will not give 

you guidance in choosing an air conditioner that will keep your 

house cool on the hottest days.  

• Instead, it would be much more helpful to know the highest 

temperature you might encounter, or how many days you can 

expect to be above a certain temperature. 
 

2. Pregnancy interventions are often aimed at reducing the 

incidence of low birth weight babies.  

• The mean or median birth weights in the intervention and 

non-intervention group do not give you this information.  

• Instead, we need to focus on percentage of births in the low 

weight category.  

• This might be defined in absolute terms (e.g., weight below a 

certain specific weight) or in relative terms (e.g., below the 

median or below the first quartile.) 

 

(See the Appendix for more examples and references involving 

unusual events).  

 

 


