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I. TYPE II ERROR 

Not rejecting the null hypothesis when in fact the alternate 

hypothesis is true is called a Type II error. 

• Example 2 below provides a situation where the concept 

of Type II error is important.  

Note: "The alternate hypothesis" in the definition of Type II error 

may refer to the alternate hypothesis in a hypothesis test, or it may 

refer to a "specific" alternate hypothesis. 

Example: In a t-test for a sample mean !, with null 

hypothesis "! = 0" and alternate hypothesis "! > 0":  

• We might talk about the Type II error relative to the 

general alternate hypothesis "! > 0". 

• Or we might talk about the Type II error relative to the 

specific alternate hypothesis "! = 1".  

• Note that the specific alternate hypothesis is a special case 

of the general alternate hypothesis. 
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In practice, people often work with Type II error relative to a 

specific alternate hypothesis.  

• In this situation, the probability of Type II error relative to the 

specific alternate hypothesis is often called ".  

• In other words, " is the probability of making the wrong 

decision when the specific alternate hypothesis is true.  

• The specific alternative is considered since it is more feasible 

to calculate " than the probability of Type II error relative to 

the general alternative. 

• See the discussion of power below for related detail.  
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II: CONSIDERING BOTH TYPES OF ERROR TOGETHER 

  

The following table summarizes Type I and Type II errors:  

 Truth  

(for population studied) 

Null 

Hypothesis 

True 

Null 

Hypothesis 

False 

     

Decision   

(based on 

sample) 

Reject Null 

Hypothesis 

Type I Error Correct 

Decision 

Don’t reject 

Null 

Hypothesis 

Correct 

Decision 

Type II 

Error 

 

An analogy that can be helpful in understanding the two types of 

error is to consider a defendant in a trial.  

• The null hypothesis is "defendant is not guilty."  

• The alternate is "defendant is guilty." 

• A Type I error would correspond to convicting an innocent 

person. 

• Type II error would correspond to setting a guilty person free.  

• The analogous table would be: 
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 Truth  

Not Guilty Guilty 

  

 

 

Verdict 

 

Guilty 

Type I Error -- 

Innocent 

person goes to 

jail (and maybe 

guilty person 

goes free) 

 

Correct 

Decision 

 

Not Guilty 

 

Correct 

Decision 

Type II 

Error -- 

Guilty 

person goes 

free 

 

Note:  

• This could be more than just an analogy if the verdict hinges 

on statistical evidence (e.g., a DNA test), and where rejecting 

the null hypothesis would result in a verdict of guilty, and not 

rejecting the null hypothesis would result in a verdict of not 

guilty. 

• This analogy/example shows that sometimes a Type I error 

can be more serious than a Type II error. (However, this is 

not always the case). 
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The following diagram illustrates the Type I error and the Type II 

error  

• against the specific alternate hypothesis "! =1"  

• in a hypothesis test for a population mean !,  

• with null hypothesis "! = 0,"   

• alternate hypothesis "! > 0",  

• and significance level #= 0.05.  
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In the diagram, 

• The blue (leftmost) curve is the sampling distribution of the 

test statistic assuming the null hypothesis "! = 0." 

• The green (rightmost) curve is the sampling distribution of 

the test statistic assuming the specific alternate hypothesis "! 

=1".  

• The vertical red line shows the cut-off for rejection of the 

null hypothesis:  

o The null hypothesis is rejected for values of the test 

statistic to the right of the red line (and not rejected for 

values to the left of the red line). 

• The area of the diagonally hatched region to the right of the 

red line and under the blue curve is the probability of type I 

error (#). 

• The area of the horizontally hatched region to the left of the 

red line and under the green curve is the probability, ", of 

Type II error against the specific alternative.  
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III. DECIDING WHAT SIGNIFICANCE LEVEL TO USE 

 

This should be done before analyzing the data -- preferably before 

gathering the data. There are (at least) two reasons why this is 

important:  

 

1) The significance level desired is one criterion in deciding on an 

appropriate sample size.  

• See discussion of Power below. 

 

2) If more than one hypothesis test is planned, additional 

considerations need to be taken into account.  

• See discussion of Multiple Inference below. 

 

The choice of significance level should be based on the 

consequences of Type I and Type II errors: 

 

1. If the consequences of a Type I error are serious or expensive, a 

very small significance level is appropriate. 

 

Example 1: Two drugs are being compared for effectiveness in 

treating the same condition.  

o Drug 1 is very affordable, but Drug 2 is extremely 

expensive.   

o The null hypothesis is “both drugs are equally effective.”  

o The alternate is “Drug 2 is more effective than Drug 1.” 

o In this situation, a Type I error would be deciding that 

Drug 2 is more effective, when in fact it is no better than 

Drug 1, but would cost the patient much more money.  

o That would be undesirable from the patient’s perspective, 

so a small significance level is warranted. 
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2. If the consequences of a Type I error are not very serious (and 

especially if a Type II error has serious consequences), then a 

larger significance level is appropriate. 

Example 2: Two drugs are known to be equally effective for a 

certain condition.  

o They are also each equally affordable.  

o However, there is some suspicion that Drug 2 causes a 

serious side effect in some patients, whereas Drug 1 has 

been used for decades with no reports of serious side 

effects. 

o The null hypothesis is "the incidence of serious side effects 

in both drugs is the same".  

o The alternate is "the incidence of serious side effects in 

Drug 2 is greater than that in Drug 1."  

o Falsely rejecting the null hypothesis when it is in fact true 

(Type I error) would have no great consequences for the 

consumer. 

o But a Type II error (i.e., failing to reject the null 

hypothesis when in fact the alternate is true, which would 

result in deciding that Drug 2 is no more harmful than 

Drug 1 when it is in fact more harmful) could have serious 

consequences from a consumer and public health 

standpoint.  

o So setting a large significance level is appropriate.  
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Comments:  

• Neglecting to think adequately about possible consequences 

of Type I and Type II errors (and deciding acceptable levels 

of Type I and II errors based on these consequences) before 

conducting a study and analyzing data is a common mistake 

in using statistics.  

• Sometimes there may be serious consequences of each 

alternative, so some compromises or weighing priorities may 

be necessary.  

o The trial analogy illustrates this well: Which is better or 

worse, imprisoning an innocent person or letting a guilty 

person go free?  

o This is a value judgment; value judgments are often 

involved in deciding on significance levels.  

o Trying to avoid the issue by always choosing the same 

significance level is itself a value judgment.  

• Different people may decide on different standards of 

evidence. 

o This is another reason why it is important to report p-

values even if you set a significance level.  

o It is not enough just to say, “significant at the .05 level,” 

“significant at the .01 level,” etc. 

• Sometimes different stakeholders have different interests that 

compete (e.g., in the second example above, the developers 

of Drug 2 might prefer to have a smaller significance level.) 

o This is another reason why it is important to report p-

values in publications. 

• See Wuensch (1994) for more discussion of considerations 

involved in deciding on reasonable levels for Type I and 

Type II errors.  

• See also the discussion of Power below.  

• Similar considerations hold for setting confidence levels for 

confidence intervals 
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IV: POWER OF A STATISTICAL PROCEDURE 

Overview   

 

The power of a statistical procedure can be thought of as the 

probability that the procedure will detect a true difference of a 

specified type.  

• As in talking about p-values and confidence levels, the 

reference category for "probability" is the sample. 

• Thus, power is the probability that a randomly chosen sample  

o satisfying the model assumptions  

o will give evidence of a difference of the specified type 

when the procedure is applied,  

o if the specified difference does indeed occur in the 

population being studied.  

• Note also that power is a conditional probability: the 

probability of detecting a difference, if indeed the difference 

does exist. 
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In many real-life situations, there are reasonable conditions that we 

would be interested in being able to detect, and others that would 

not make a practical difference.  

Examples: 

• If you can only measure the response to within 0.1 units, it 

doesn't really make sense to worry about falsely rejecting 

a null hypothesis for a mean when the actual value of the 

mean is within less than 0.1 units of the value specified in 

the null hypothesis. 

• Some differences are of no practical importance -- for 

example, a medical treatment that extends life by 10 

minutes is probably not worth it.  

 

In cases such as these, neglecting power could result in one or 

more of the following: 

• Doing much more work or going to more expense than 

necessary 

• Obtaining results which are meaningless 

• Obtaining results that don't answer the question of interest. 
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Elaboration 

 

For many confidence interval procedures, power can be defined as:  

 

The probability (again, the reference category is “samples”) 

that the procedure will produce an interval with a half-width 

of at most a specified amount.  

 

For a hypothesis test, power can be defined as: 

 

The probability (again, the reference category is “samples”) 

of rejecting the null hypothesis under a specified condition.  

 

Example: For a one-sample t-test for the mean of a 

population, with null hypothesis Ho: ! = 100, you might be 

interested in the probability of rejecting Ho when ! $ 105, or 

when |! - 100| > 5, etc.  

As with Type II Error, we may think of power for a 

hypothesis test in terms of power against a specific 

alternative rather than against a general alternative. 
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Example: If we are performing a hypothesis test for the mean of a 

population, with null hypothesis H0: ! = 0 and alternate hypothesis 

! > 0, we might calculate the power of the test against the specific 

alternative H1: ! = 1, or against the specific alternative H3: ! = 3, 

etc.  

The picture below shows three sampling distributions: 

• The sampling distribution assuming H0 (blue; leftmost curve) 

• The sampling distribution assuming H1 (green; middle curve) 

• The sampling distribution assuming H3 (yellow; rightmost 

curve) 

The red line marks the cut-off corresponding to a significance level 

# = 0.05.  
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• Thus the area under the blue curve to the right of the red 

line is 0.05. 

• The area under the green curve the to right of the red line 

is the probability of rejecting the null hypothesis (! = 0) if 

the specific alternative H1: ! = 1 is true.  

o In other words, this area is the power of the test against 

the specific alternative H1: ! = 1.  

o We can see in the picture that in this case, this power is 

greater than 0.05, but noticeably less than 0.50. 

• Similarly, the area under the yellow curve the to right of 

the red line is the power of the test against the specific 

alternative H3: ! = 3.  

o Notice that the power in this case is much larger than 

0.5. 

This illustrates the general phenomenon that the farther an 

alternative is from the null hypothesis, the higher the power of the 

test to detect it.  (See Claremont Graduate University WISE 

Project Statistical Power Demo for an interactive illustration.) 

Note:  

• For most tests, it is possible to calculate the power against a 

specific alternative, at least to a reasonable approximation. 

(More below and in Appendix) 

• It is not usually possible to calculate the power against a 

general alternative, since the general alternative is made up 

of infinitely many possible specific alternatives.  
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Power and Type II Error 

 

Recall: The Type II Error rate " of a test against a specific alternate 

hypothesis test is represented in the diagram above as the area 

under the sampling distribution curve for that alternate hypothesis 

and to the left of the cut-off line for the test. Thus  

"  + (Power of a test against a specific alternate hypothesis)  

 = total area under sampling distribution curve  

 = 1,  

so 

Power = 1 - " 
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Factors that Affect the Power of a Statistical Procedure 

 

Power depends on several factors in addition to the difference to be 

detected. 

1. Significance Level 

This can be seen in the diagram illustrating power: Increasing the 

significance level # will move the red line to the left, and hence 

will increase power. Similarly, decreasing significance level 

decreases power.  

2. Sample Size 

Example: The pictures below each show the sampling distribution 

for the mean under the null hypothesis µ = 0 (blue -- on the left in 

each picture) together with the sampling distribution under the 

alternate hypothesis µ = 1 (green -- on the right in each picture), 

but for different sample sizes.  

• The first picture is for sample size n = 25; the second picture 

is for sample size n = 100.  

• Note that both graphs are in the same scale. In both pictures, 

the blue curve is centered at 0 (corresponding to the the null 

hypothesis) and the green curve is centered at 1 

(corresponding to the alternate hypothesis). 

• In each picture, the red line is the cut-off for rejection with 

alpha = 0.05 (for a one-tailed test) -- that is, in each picture, 

the area under the blue curve to the right of the red line is 

0.05.  

• In each picture, the area under the green curve to the right of 

the red line is the power of the test against the alternate 

depicted. Note that this area is larger in the second picture 

(the one with larger sample size) than in the first picture.  
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This illustrates the general situation:  

 Larger sample size gives larger power.  

The reason is essentially the same as in the example: Larger 

sample size gives a narrower sampling distribution, which means 

there is less overlap in the two sampling distributions (for null and 

alternate hypotheses). 

See Claremont University’s Wise Project’s Statistical Power 

Applet (http://wise.cgu.edu/powermod/power_applet.asp) for an 

interactive demonstration of the interplay between sample size and 

power for a one-sample z-test. 

Note: Sample size needed typically increases at an increasing rate 

as power increases. (e.g., in the above example, increasing the 

sample size by a factor of 4 increases the power by a factor of 

about 2; the graphics aren't accurate enough to show this well.) 
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3. Variance 

Power also depends on variance: smaller variance yields higher 

power.  

 

Example: The pictures below each show the sampling distribution 

for the mean under the null hypothesis µ = 0 (blue -- on the left in 

each picture) together with the sampling distribution under the 

alternate hypothesis µ = 1 (green -- on the right in each picture), 

both with sample size 25, but for different standard deviations of 

the underlying distributions. (Different standard deviations might 

arise from using two different measuring instruments, or from 

considering two different populations.) 

• In the first picture, the standard deviation is 10; in the second 

picture, it is 5.  

• Note that both graphs are in the same scale. In both pictures, 

the blue curve is centered at 0 (corresponding to the the null 

hypothesis) and the green curve is centered at 1 

(corresponding to the alternate hypothesis). 

• In each picture, the red line is the cut-off for rejection with 

alpha = 0.05 (for a one-tailed test) -- that is, in each picture, 

the area under the blue curve to the right of the red line is 

0.05.  

• In each picture, the area under the green curve to the right of 

the red line is the power of the test against the alternate 

depicted. Note that this area is larger in the second picture 

(the one with smaller standard deviation) than in the first 

picture.  
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(See Claremont University’s Wise Project’s Statistical Power 

Applet at http://wise.cgu.edu/powermod/power_applet.asp or  the 

Rice Virtual Lab in Statistics’ Robustness Simulation at 

http://onlinestatbook.com/stat_sim/robustness/index.html for an 

interactive demonstration.) 

Note: Variance can sometimes be reduced by using a better 

measuring instrument, restricting to a subpopulation, or by 

choosing a better experimental design (see below). 
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4. Experimental Design 

Power can sometimes be increased by adopting a different 

experimental design that has lower error variance. For example, 

stratified sampling or blocking can often reduce error variance and 

hence increase power. However, 

• The power calculation will depend on the experimental 

design.  

• The statistical analysis will depend on the experimental 

design. (To be discussed tomorrow.) 

• For more on designs that may increase power, see Lipsey 

(1990) or McClelland (2000) 

Calculating Sample Size to Give Desired Power: The dependence 

of power on sample size allows us, in principle, to figure out 

beforehand what sample size is needed to detect a specified 

difference, with a specified power, at a given significance level, if 

that difference is really there.  

In practice, details on figuring out sample size will vary from 

procedure to procedure. See the Appendix for discussion of some 

of the considerations involved.  
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Detrimental Effects of Underpowered or Overpowered Studies 
 

The most straightforward consequence of underpowered studies 

(i.e., those with low probability of detecting an effect of practical 

importance) is that effects of practical importance are not detected.  

 

But there is a second, more subtle consequence: underpowered 

studies result in a larger variance of the estimates of the parameter 

being estimated. For example, in estimating a population mean, the 

sample means of studies with low power have high variance; in 

other words, the sampling distribution of sample means is wide.  

 

This is illustrated in the following picture, which shows the 

sampling distributions for a variable with zero mean when sample 

size n = 25 (red) and when n = 100 (blue). The vertical lines 

toward the right of each sampling distribution show the cut-off for 

a one-sided hypothesis test with null hypothesis ! = 0 and 

significance level alpha = .05. Notice that  

• The sampling distribution for the smaller sample size (n = 

25) is wider than the sampling distribution for the larger 

sample size ( n = 100). 

• Thus, when the null hypothesis is rejected with the smaller 

sample size n = 25, the sample mean tends to be noticeably 

larger than when the null hypothesis is rejected with the 

larger sample size n = 100.  
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This reflects the general phenomenon that studies with low 

power have a larger chance of having a large sample mean than 

studies with high power. 

 

In particular, when there is a Type I error (falsely rejecting the null 

hypothesis), the effect will appear to be stronger with a small 

sample size (lower power) than with a large sample size (higher 

power). This may suggest an exaggerated effect, or even one that is 

not there. Thus, when studies are underpowered, the literature is 

likely to be inconsistent and often misleading.  

• This problem is increased because of the “File Drawer 

Problem” (discussed below). 
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Overpowered studies waste resources.  

• When human or animal subjects are involved, having an 

overpowered study can be considered unethical.  

o For more on ethical considerations in animal studies, 

see Festing (2010) or Kilkenny et al (2010)  

• More generally, an overpowered study may be considered 

unethical if it wastes resources. 

A common compromise between over-power and under-power is 

to try for power around .80. However, power needs to be 

considered case-by-case, balancing the risks of Type I and Type II 

errors.  
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V: COMMON MISTAKES INVOLVING POWER 

 

1. Rejecting a null hypothesis without considering practical 

significance. 

A study with large enough sample size will have high enough 

power to detect minuscule differences that are not of practical 

significance. Since power typically increases with increasing 

sample size, practical significance is important to consider. 

 

2. Accepting a null hypothesis when a result is not statistically 

significant, without taking power into account. 

 

• Power decreases with decreasing sample size.  

• Thus a small sample size may not be able to detect an 

important difference.  

• If there is strong evidence that the power of a procedure will 

indeed detect a difference of practical importance, then 

accepting the null hypothesis is appropriate. 

o However, it may be better to use a test for equivalence; 

see the Appendix for references. 

• Otherwise “accepting the null hypothesis” is not appropriate 

-- all we can legitimately say then is that we fail to reject the 

null hypothesis. 
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3. Being convinced by a research study with low power. 

 

As discussed above, underpowered studies are likely to be 

inconsistent and are often misleading. 

 

4. Neglecting to do a power analysis/sample size calculation 

before collecting data 

• If you use a sample size that is too small to detect a 

difference that is of practical significance, you may get a 

result that is not statistically significant even though there is a 

difference of practical significance; thus you have expended 

considerable effort to obtain a result that does not really 

answer the question of interest. 

• If you use a sample size that is larger than needed to detect a 

relevant difference, you have also wasted resources.  

 

 

 

 

 

 

 

 

 

 



 29 

5. Neglecting to take multiple inference into account when 

calculating power. 

If more than one inference procedure is used for a data set, then 

power calculations need to take that into account. Doing a 

power calculation for just one inference will result in an 

underpowered study. (More on this tomorrow)  

• For more detail, see Maxwell and Kelley (2011) and 

Maxwell (2004) 

 

6. Using standardized effect sizes rather than considering the 

particulars of the question being studied. 

"Standardized effect sizes" (sometimes called "canned" effect 

sizes) are expressions involving more than one of the factors 

that needs to be taken into consideration in considering 

appropriate levels of Type I and Type II error in deciding on 

power and sample size. Examples:  

• Cohen's effect size d is the ratio of the raw effect size 

(e.g., difference in means when comparing two groups) 

and a suitable standard deviation. But each of these 

typically needs to be considered individually in designing 

a study and determining power; it's not necessarily the 

ratio that's important. (See Appendix) 

• The correlation (or squared correlation) in regression. The 

correlation in simple linear regression involves three 

quantities: the slope, the y standard deviation, and the x 

standard deviation. Each of these three typically needs to 

be considered individually in designing the study and 

determining power and sample size. In multiple 

regression, the situation may be even more complex. 

For specific examples illustrating these points, see Lenth, 

(2000) and (2001)  
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7. Confusing retrospective power and prospective power. 

• Power as defined above for a hypothesis test is also called 

prospective or a priori power.  

o It is a conditional probability, P(reject H0 | Ha), 

calculated without using the data to be analyzed.  

o In fact, it is best calculated before even gathering the 

data, and taken into account in the data-gathering plan. 

• Retrospective power is calculated after the data have been 

collected, using the data.  

• Depending on how retrospective power is calculated, it might 

be legitimate to use to estimate the power and sample size for 

a future study, but cannot legitimately be used as describing 

the power of the study from which it is calculated.   

• However, some methods of calculating retrospective power 

calculate the power to detect the effect observed in the data -- 

which misses the whole point of considering practical 

significance. These methods typically yield simply a 

transformation of p-value. See Lenth (2000) for more detail. 

• See Hoenig and Heisley (2001) and Wuensch et al (2003) for 

more discussion and further references.  
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VI. THE FILE DRAWER PROBLEM (PUBLICATION BIAS) 

Publication bias refers to the influence of the results of a study on 

whether or not the study is published.  

 

Examples of how results might influence the publication decision: 

• Whether or not the results are statistically significant. 

• Whether or not the results are practically significant. 

• Whether or not the results agree with the hopes or 

expectations of the researcher or sponsor. 

 

Publication bias is also called the file drawer problem, especially 

when the nature of the bias is that studies which fail to reject the 

null hypothesis (i.e., that do not produce a statistically significant 

result) are less likely to be published than those that do produce a 

statistically significant result.  

 

Several studies (see Sterling et al 1995, Song et al 2009, and 

Hopewell et al 2009) have found evidence of publication bias in 

the research literature.   
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Consequences of the File Drawer Problem: 

1. Investigators may spend unnecessary effort conducting research 

on topics that have already been well researched but not reported 

because results were negative. 

2. Effects that are not real may appear to be supported by research. 

• Recall that if a significance level of 0.05 is set, then in 

repeated studies, about 5% of studies of a situation where the 

null hypothesis is true will falsely reject the null hypothesis 

• Thus, if just (or even predominantly) the statistically 

significant studies are published, the published record 

misrepresents the true situation.  

 

3. Furthermore, papers that are published because of Type I errors, 

if underpowered, may show an exaggerated effect size, increasing 

the misrepresentation. 

• Recall from the discussion of power:  
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Some Methods Proposed to Detect Publication Bias: 

1. Rosenthal (1979) proposed a method, based on probability 

calculations, for deciding whether or not a finding is "resistant to 

the file drawer threat."  

• This method has become known as the fail-safe file drawer 

(or FSFD) analysis.  

• It involves calculating a "fail-safe number" which is used to 

estimate whether or not the file-drawer problem is likely to 

be a problem for a particular review or meta-analysis. 

•  Scargle (2000) has criticized Rosenthal's method on the 

grounds that it fails to take into account the bias in the "file 

drawer" of unpublished studies, and thus can give misleading 

results.  
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2. Various types of plots have been used to try to detect publication 

bias. These plot some measure of precision against effect size, or 

vice-versa. 

• Example: 

 

• Some such plots are called “funnel plots” because they 

typically have a funnel shape. 

• However, Lau et al (2006) point out some problems in using 

these plots. 
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3. Research registries have been instituted in some areas. 

o For example, certain clinical trials are now required by 

law to be registered at the NIH database 

ClinicalTrials.gov. 

o These are beginning to point to possible systemic 

problems, such as:  

“We are finding that in some cases, investigators cannot 

explain their trial, cannot explain their data. Many of 

them rely on the biostatistician, but some 

biostatisticians can’t explain the trial design. 

So there is a disturbing sense of some trials being 

done with no clear intellectual leader.” 

Deborah Zarin, Director, ClinicalTrials.gov, 

quoted in interview in Marshall (2011) 
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4. Additionally, full data may reveal a different story from what 

appears in published papers and conference proceedings.  

• Although such data is increasingly becoming more available, 

obtaining it can often still be difficult or impossible. 

• See Doshi et al (2012) for an example. 

o The editorial preface to this article says: “After 

publication of a Cochrane review into the effectiveness 

of oseltamivir [Tamiflu] in 2009, the reviewers got 

access to thousands of pages of previously unavailable 

data. [The authors] describe how it shook their faith in 

published reports and changed their approach to 

systematic reviews.” 

o The authors received over 3000 pages of study reports 

from one drug company, and over 25,000 pages from 

the European Medicines Agency. 

o The new review based on the additional data took the 

equivalent of two full-time researchers for 14 months. 

o They also point out how calculations based on 

electronic data bases may be questionable (e.g., 

because of lack of standardized definitions for 

complications). 
 

See the Appendix for suggestions for dealing with the File Drawer 

Problem. 
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VII. MULTIPLE INFERENCE 

 

"Recognize that any frequentist statistical test has a random 

chance of indicating significance when it is not really present. 

Running multiple tests on the same data set at the same stage of an 

analysis increases the chance of obtaining at least one invalid 

result. Selecting the one "significant" result from a multiplicity of 

parallel tests poses a grave risk of an incorrect conclusion. Failure 

to disclose the full extent of tests and their results in such a case 

would be highly misleading." 

Professionalism Guideline 8, Ethical Guidelines for Statistical 

Practice, American Statistical Association, 1997 

 

Performing more than one statistical inference procedure on the 

same data set is called multiple inference, or joint inference, or 

simultaneous inference, or multiple testing, or multiple 

comparisons, or the problem of multiplicity. 

 

Performing multiple inference without adjusting the Type I error 

rate accordingly is a common error in research using statistics.  

• For example, A. M. Strasak et al (2007) examined all papers 

from 2004 issues of the New England Journal of Medicine 

and Nature Medicine and found that 32.3% of those from 

NEJM and 27.3% from Nature Medicine were "Missing 

discussion of the problem of multiple significance testing if 

occurred." 

• These two journals are considered the top journals (according 

to impact figure) in clinical science and in research and 

experimental medicine, respectively.  
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The Problem 

 

Recall: If you perform a hypothesis test using a certain significance 

level (we’ll use 0.05 for illustration), and if you obtain a p-value 

less than 0.05, then there are three possibilities: 

1. The model assumptions for the hypothesis test are not 

satisfied in the context of your data. 

2. The null hypothesis is false. 

3. Your sample happens to be one of the 5% of samples 

satisfying the appropriate model conditions for which the 

hypothesis test gives you a Type I error – i.e., you falsely 

reject the null hypothesis.  

Now suppose you are performing two hypothesis tests, using the 

same data for both. 

• Suppose that in fact all model assumptions are satisfied and 

both null hypotheses are true.  

• There is in general no reason to believe that the samples 

giving a Type I error for one test will also give a Type I error 

for the other test. 

• See Jerry Dallal’s Simulation  

•  So we need to consider the joint Type I error rate  
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Joint Type I error rate: This is the probability that a randomly 

chosen sample (of the given size, satisfying the appropriate model 

assumptions) will give a Type I error for at least one of the 

hypothesis tests performed. 

The joint Type I error rate is also known as the overall Type I 

error rate, or joint significance level, or the simultaneous Type I 

error rate, or the family-wise error rate (FWER), or the 

experiment-wise error rate, etc.  

• The acronym FWER is becoming more and more common, 

so will be used in the sequel, often along with another name 

for the concept as well. 

 

An especially serious form of neglect of the problem of multiple 

inference is the one alluded to in the quote from the ASA ethics 

page:  

• Trying several tests and reporting just one significant test, 

without disclosing how many tests were performed or 

correcting the significance level to take into account the 

multiple inference. 

•  Don’t do it! 
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Multiple inference with confidence intervals 

 

The problem of multiple inference also occurs for confidence 

intervals.  

• In this case, we need to focus on the confidence level.  

• Recall: A 95% confidence interval is an interval obtained by 

using a procedure that, for 95% of all suitably random 

samples, of the given size from the random variable and 

population of interest, produces an interval containing the 

parameter we are estimating (assuming the model 

assumptions are satisfied).  

• In other words, the procedure does what we want (i.e. gives 

an interval containing the true value of the parameter) for 

95% of suitable samples.  

• If we are using confidence intervals to estimate two 

parameters, there is no reason to believe that the 95% of 

samples for which the procedure "works" for one parameter 

(i.e. gives an interval containing the true value of the 

parameter) will be the same as the 95% of samples for which 

the procedure "works" for the other parameter.  

• If we are calculating confidence intervals for more than one 

parameter, we can talk about the joint (or overall or 

simultaneous or family-wise or experiment-wise) 

confidence level.  

• For example, a group of confidence intervals (for different 

parameters) has an overall 95% confidence level (or 95% 

family-wise confidence level, etc.) if the intervals are 

calculated using a procedure which, for 95% of all suitably 

random samples, of the given size from the population of 

interest, produces for each parameter an interval containing 

that parameter (assuming the model assumptions are 

satisfied).   
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What to do about it 

 

Unfortunately, there is no simple formula to cover all cases:  

• Depending on the context, the samples giving Type I errors 

for two tests might be the same, they might have no overlap, 

or they could be somewhere in between.  

• Various techniques for bounding the FWER (joint Type I 

error rate) have been devised for various special 

circumstances. 

• Only two fairly general methods (Bonferroni and False 

Discovery Rate) will be discussed here. 

• For more information on other more specialized methods, 

see, e.g., Hochberg and Tamhane (1987) and Miller (1981) 

• See Efron (2010) for both an account of the history of the 

subject and discussion of recent developments in dealing 

with multiple inference, especially in large data sets. 
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Bonferroni method:  

 

Fairly basic probability calculations show that if the sum of the 

individual Type I error rates for different tests is less than #, then 

the overall (“family-wise”) Type I error rate (FWER) for the 

combined tests will be at most #.  

• So, for example, if you are performing five hypothesis tests 

and would like an FWER (overall significance level) of at 

most 0.05, then using significance level 0.01 for each test 

will give an FWER (overall significance level) of at most 

0.05.  

• Similarly, if you are finding confidence intervals for five 

parameters and want an overall confidence level of 95%, 

using the 99% confidence level for each confidence interval 

will give you overall confidence level at least 95%. (Think of 

confidence level as 1 - #.) 

The Bonferroni method can be a used as a fallback method when 

no other method is known to apply.  

• However, if a method that applies to the specific situation is 

available, it will often be better (less conservative) than the 

Bonferroni method, so calculate by both methods and 

compare. 
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The Bonferroni method is also useful for apportioning the overall 

Type I error between different types of inference. 

• For example, if three confidence intervals and two hypothesis 

tests are planned, and an overall Type I error rate of .05 is 

desired, then using 99% confidence intervals and individual 

significance rates .01 for the hypothesis tests will achieve 

this. 

• This can also be used to apportion Type I error rate between 

pre-planned inference (the inference planned as part of the 

design of the study) and “data-snooping” inferences 

(inferences based on looking at the data and noticing other 

things of interest; more below).  

• However, this apportioning should be done before analyzing 

the data.  

Whichever method is used, it is important to make the calculations 

based on the number of tests that have been done, not just the 

number that are reported. (See Data Snooping tomorrow for more 

discussion.) 
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False discovery rate:  

 

An alternative to bounding Type I error was introduced by 

Benjamini and Hochberg (1995): bounding the False Discovery 

Rate.  

The False Discovery Rate (FDR) of a group of tests is the 

expected value of the ratio of falsely rejected hypotheses to all 

rejected hypotheses. 

("Expected value" refers to the mean of a distribution. Here, the 

distribution is the sampling distribution of the ratio of falsely 

rejected hypotheses to all rejected hypotheses tested.)  

 

Note: 

• The family-wise error rate (FWER) focuses on the possibility 

of making any error among all the inferences performed. 

• The false discovery rate (FDR) tells you what proportion of 

the rejected null hypotheses are, on average, really false.  

• Bounding the FDR rather than the FWER may be a more 

reasonable choice when many inferences are performed, 

especially if there is little expectation of harm from falsely 

rejecting a null hypothesis.  

• Thus it is increasingly being adopted in areas such as micro-

array gene expression experiments or neuro-imaging.  

• However, these may involve variations rather than the 

definition given above. 
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As with the FWER, there are various methods of actually bounding 

the false discovery rate. 

• For the original false discovery rate, see  Benjamini and 

Hochberg (1995), Benjamini and Yekutieli (2001), and 

Benjamini and Yekutieli (2005)  

• For variations of false discovery rate, see Efron (2010). 
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Subtleties and controversies 

  

Bounding the overall Type I error rate (FWER) will reduce the 

power of the tests, compared to using individual Type I error rates.  

• Some researchers use this as an argument against multiple 

inference procedures.  

• The counterargument is the argument for multiple inference 

procedures to begin with: Neglecting them will produce 

excessive numbers of false findings, so that the "power" as 

calculated from single tests is misleading. 

o See Maxwell and Kelley (2011) and Maxwell (2004) 
for more details. 

• Bounding the False Discovery Rate (FDR) will usually give 

higher power than bounding the overall Type I error rate 

(FWER). 

 

Consequently, it is important to consider the particular 

circumstances, as in considering both Type I and Type II errors in 

deciding significance levels.  

• In particular, it is important to consider the consequences of 

each type of error in the context of the particular research.  
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Examples: 

1. A research lab is using hypothesis tests to screen genes for 

possible candidates that may contribute to certain diseases.  

• Each gene identified as a possible candidate will undergo 

further testing.  

• If the results of the initial screening are not to be published 

except in conjunction with the results of the secondary 

testing, and if the secondary screening is inexpensive 

enough that many second level tests can be run, then the 

researchers could reasonably decide to ignore overall Type 

I error in the initial screening tests, since there would be 

no harm or excessive expense in having a high Type I 

error rate.  

• However, if the secondary tests were expensive, the 

researchers would reasonably decide to bound either 

family-wise Type I error rate or False Discovery Rate.  

 

2. Consider a variation of the situation in Example 1:  

• The researchers are using hypothesis tests to screen genes 

as in Example 1, but plan to publish the results of the 

screening without doing secondary testing of the 

candidates identified.  

• In this situation, ethical considerations would warrant 

bounding either the FWER or the FDR -- and taking pains 

to emphasize in the published report that these results are 

just of a preliminary screening for possible candidates, and 

that these preliminary findings need to be confirmed by 

further testing.  

 


