	Population	One Simple Random	All Simple Random Samples of size n
		Sample y_1, y_2, \dots, y_n of size n	
Associated Random	Y	Y	\overline{Y}_n
Variable			The population for \overline{Y}_n is all simple random samples from Y. The value of \overline{Y}_n for a particular simple random sample is the sample mean \overline{y} for that sample.
Associated Distribution	Distribution of Y	Distribution of Y	Sampling Distribution
Associated Mean(s)	Population mean μ , also called E(Y), or the expected value of Y, or the expectation of Y	Sample mean $\overline{y} = (y_1 + y_2 + + y_n)/n$ It's an estimate of μ .	Since it is a random variable, \overline{Y}_n also has a mean, $E(\overline{Y}_n)$. A mathematical theorem tells us that $E(\overline{Y}_n) = \mu$. In other words, the random variables Y and \overline{Y}_n have the same mean – i.e., $E(\overline{Y}_n) = E(Y) = \mu$
Associated Standard Deviation	Population standard deviation σ	Sample standard deviation $s = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n} (\bar{x} - x_i)^2}$ s is an <u>estimate</u> of the population standard deviation σ	Sampling distribution standard deviation. A mathematical theorem tells us that the sampling standard deviation is σ / \sqrt{n}