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The following chart summarizes which model assumptions are 

necessary to prove which part of the theorem: 

 Conclusions about Sampling Distribution 

(Distribution of 

! 

Y 
n ) 

 1: Normal 2: Mean ! 3: Standard 

deviation 

! 

"
n

  

Assumption 1 

(Y normal) 

 

! 

 

 

 

 

Assumption 2 

(simple random 

samples) 

 

! 

  

! 

(Note: The conclusion that the sampling distribution 

! 

Y 
n  has the 

same mean as Y does not involve either of the model assumptions.) 
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• The conclusions of the theorem will allow us to do the 

following: 

o If we specify a probability (we'll use 0.95 to illustrate), we 

can find a number a so that 

(*)    The probability that 

! 

Y 
n  lies between µ - a and µ + a is 

approximately 0.95: 

 

P(µ - a < 

! 

Y 
n  <  µ + a) " 0.95 

 

Caution: It is important to get the reference category 

straight here. This amounts to keeping in mind what is a 

random variable and what is a constant. Here, 

! 

Y 
n  is the 

random variable (because the sample is varying), whereas  

µ is constant. 

 

Note: The z-procedure for confidence intervals is only an 

approximate procedure; that is why the “approximately” is 

in (*) and below.  Many procedures are “exact”; we don’t 

need the “approximately” for them. 
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o A little algebraic manipulation (which can be stated in 

words as, “If the estimate is within a units of the mean µ,  

then µ is within a units of the estimate”)  allows us to 

restate (*) as 

(**)   The probability that µ lies between 

! 

Y 
n  - a and 

! 

Y 
n  + a  

  is approximately 0.95:  

  P(

! 

Y 
n  - a <  µ < 

! 

Y 
n  + a) " 0.95 

 

Caution: It is again important to get the reference category 

correct here. It hasn't changed: it is still the sample that is 

varying, not µ.  So the probability refers to 

! 

Y 
n , not to µ. 

 

 Thinking that the probability in (**) refers to µ is a 

common mistake in interpreting confidence intervals. 

 

 It may help to restate (**) as: 

 

(***) The probability that the interval from  

 

! 

Y 
n  - a to 

! 

Y 
n  + a  contains µ is approximately 0.95. 

 

Note: The reference category is still the sample – the 

sample is varying, but µ is not varying, However, as the 

sample varies, so does 

! 

Y 
n , and hence in this restatement, 

the interval is varying. This is helpful to remember. 
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• We are now faced with two possibilities (assuming the model 

assumptions are indeed all true): 

1) The sample we have taken is one of the approximately 

95% for which the interval from 

! 

Y 
n - a to 

! 

Y 
n + a does 

contain µ. " 

 

2) Our sample is one of the approximately 5% for which the 

interval from 

! 

Y 
n  - a to 

! 

Y 
n  + a does not contain µ.  !  

 

• Unfortunately, we can't know which of these two possibilities 

is true for the sample we have.  !   
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• Since this is the best we can do, we calculate the values of 

! 

Y 
n  - a 

and 

! 

Y 
n  + a for the sample we have, and call the resulting interval 

an approximate 95% confidence interval for µ.  

o We can say that we have obtained the confidence interval 

by using a procedure that, for approximately 95% of all 

simple random samples from Y, of the given size n, 

produces an interval containing the parameter µ that we 

are estimating.  

o Unfortunately, we can't know whether or not the sample 

we have used is one of the approximately 95% of "good" 

samples that yield a confidence interval containing the true 

mean µ, or whether the sample we have is one of the 

approximately 5% of "bad" samples that yield a 

confidence interval that does not contain the true mean µ.  

o We can just say that we have used a procedure that 

"works" about 95% of the time.   

o In other words, confidence is in the degree of reliability of 

the method, not in the result. 

o Various web demos can demonstrate. 
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In general: We can follow a similar procedure for many other 

situations to obtain confidence intervals for parameters. 

• Each type of confidence interval procedure has its own model 

assumptions. 

o If the model assumptions are not true, we can’t be sure 

that the procedure does what is claimed.  

o However, some procedures are robust to some degree to 

some departures from models assumptions -- i.e., the 

procedure works pretty closely to what is intended if the 

model assumption is not too far from true. 

o Robustness depends on the particular procedure; there are 

no "one size fits all" rules. 
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• We can decide on the "level of confidence" we want;  

o E.g., we can choose 90%, 99%, etc. rather than 95%. 

o Just which level of confidence is appropriate depends on 

the circumstances. (More later) 

• The confidence level is the proportion (expressed as a 

percentage) of samples for which the procedure results in an 

interval containing the true parameter. (Or approximate 

proportion, if the procedure is not exact.) 

• However, a higher level of confidence will produce a wider 

confidence interval. (See demo) 

o i.e., less certainty in our estimate.  

o So there is a trade-off between level of confidence and 

degree of certainty. 
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• Sometimes the best we can do is a procedure that only gives 

approximate confidence intervals. 

o i.e., the sampling distribution can be described only 

approximately. 

o i.e., there is one more source of uncertainty. 

o This is the case for the large-sample z-procedure. 

 

• If the sampling distribution is not symmetric, we can't expect 

the confidence interval to be symmetric around the estimate. 

o In this case, there might be more than one reasonable 

procedure for calculating the endpoints of the confidence 

interval. 

o This is typically the case for variances, odds ratios, and 

relative risks, which usually have skewed distributions 

such as F or chi-squared. 

 

• There are variations such as "upper confidence limits" or 

"lower confidence limits" where we are only interested in 

estimating how large or how small the estimate might be. 
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V. MORE ON FREQUENTIST HYPOTHESIS TESTS 

 

We’ll now continue the discussion of hypothesis tests. 

 

Recall:  Most commonly used frequentist hypothesis tests involve 

the following elements: 

 

   1. Model assumptions  

   2. Null and alternative hypothesis 

   3. A test statistic (something calculated by a rule from a sample)  

o This needs to have the property that extreme values of the 

test statistic are rare, and hence cast doubt on the null 

hypothesis. 

o The test statistic will have a certain sampling distribution. 

   4. A mathematical theorem saying, "If the model assumptions 

and the null hypothesis are both true, then the sampling 

distribution of the test statistic has this particular form." 

 

The exact details of these four elements will depend on the 

particular hypothesis test. 
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Illustration: One-sided t-test for a Sample Mean  

 

In this situation, the four elements above are: 

 

1. Model assumptions: 

• The random variable Y is normally distributed.  

• Samples are simple random samples. 

 

2. Null and alternate hypotheses: 

• Null hypothesis: The population mean ! of the random 

variable Y is !0. (i.e.,  ! =  !0) 

• Alternative hypothesis: The population mean ! of the random 

variable Y is greater than !0. (i.e., ! > !0)  

3. Test statistic: For a simple random sample y1, y2, ... , yn of size n, 

we define the t-statistic as 

          t = 

! 

y "µ
0

s
n

  , 

where 

 

! 

y  = (y1+ y2+ ... + yn)/n  (sample mean),  

and 

s =  

! 

1

n "1
(x " x

i
)
2

i=1

n

#  (sample standard deviation) 

 

 

 



 36 

The sampling distribution for this test is then the distribution of the 

random variable Tn defined by random process and calculation, 

“Randomly choose a simple random sample of size n and 

calculate the t-statistic for that sample.”  

4. The mathematical theorem associated with this inference 

procedure (one-sided t-test for population mean) says: 

 If the model assumptions are true and the null hypothesis is 

true, then the sampling distribution is the t-distribution with n 

degrees of freedom.  

(For large values of n, the t-distribution looks very much like the 

standard normal distribution; but as n gets smaller, the peak gets 

slightly smaller and the tails go further out.) 

The reasoning behind the hypothesis test uses the sampling 

distribution and the value of the test statistic for the sample that 

has actually been collected (the actual data). 

1. First, calculate the t-statistic for the data 

2. Then consider where the t-statistic for the data at hand lies 

on the sampling distribution.  Two possible values are shown 

in red and green, respectively, in the diagram below. 

o  Remember that this picture depends on the validity of the 

model assumptions and on the assumption that the null 

hypothesis is true. 
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Case 1: If the t-statistic lies at the red bar (around 0.5) in the 

picture, nothing is unusual; our data are consistent with the null 

hypothesis.  

 

Case 2: If the t-statistic lies at the green bar (around 2.5), then the 

data would be fairly unusual -- assuming the null hypothesis is 

true.  

 

So a t-statistic at the green bar would cast some reasonable doubt 

on the null hypothesis.  

 

A t-statistic even further to the right would cast even more doubt 

on the null hypothesis.
 

 

Note: A little algebra will show that if t = 

! 

y "µ
0

s
n

 is unusually 

large, then so is 

! 

y , and vice-versa 
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p-Values 

 

The idea: The p-value is a quantitative measure of how unusual a 

particular test statistic is, with lower p-values indicating more 

unusual data.  

 

The general definition: 

p-value = the probability of obtaining a test statistic at least as 

extreme as the one from the data at hand, assuming the model 

assumptions and the null hypothesis are all true.   

Elaboration: The interpretation of "at least as extreme as" depends 

on the alternative hypothesis.   

• For the one-sided alternative hypothesis ! > !0  (as in our 

example), "at least as extreme as" means "at least as great as".  

o Recalling that the probability of a random variable lying in 

a certain region is the area under the probability 

distribution curve over that region, we conclude that for 

this alternative hypothesis, the p-value is the area under 

the sampling distribution curve to the right of the test 

statistic calculated from the data.  

o Note that, in the picture, the p-value for the t-statistic at the 

green bar is much less than that for the t-statistic at the red 

bar. 
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• Similarly, for the other one-sided alternative, ! < !0 , the p-

value is the area under the sampling distribution curve to the 

left of the calculated test statistic.  

o Note that for this alternative hypothesis, the p-value for the 

t-statistic at the green bar would be much greater than the 

t-statistic at the red bar, but both would be large as p-

values go. 

• For the two-sided alternative ! # !0, the p-value would be the 

area under the curve to the right of the absolute value of the 

calculated t-statistic, plus the area under the curve to the left 

of the negative of the absolute value of the calculated t-

statistic.  

o Since the sampling distribution in the illustration is 

symmetric about zero, the two-sided p-value of, say the 

green value, would be twice the area under the curve to the 

right of the green bar.   
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Recall that in the sampling distribution, we are only considering 

samples  

• from the same random variable,  

• that fit the model assumptions and 

• of the same size as the one we have.  

 

So if we spelling everything out, the definition of p-value reads: 

p-value = the probability of obtaining a test statistic at least as 

extreme as the one from the data at hand, assuming  

• the model assumptions are all true, and 

• the null hypothesis is true, and 

• the random variable is the same (including the same 

population), and 

• the sample size is the same. 
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Comment: The preceding discussion can be summarized as 

follows: 

 

 If we obtain an unusually small p-value, then (at least) one of the 

following must be true: 

I. At least one of the model assumptions is not true (in which 

case the test may be inappropriate). 

II. The null hypothesis is false. 

III. The sample we have obtained happens to be one of the small 

percentage that result in an unusually small p-value. 

Thus, if the p-value is small enough and all the model assumptions 

are met, then rejecting the null hypothesis in favor of the alternate 

hypothesis can be considered a rational decision, based on the 

evidence of the data used. 

 

Comments:  

1. How small is "small enough" is a judgment call. 

2. "Rejecting the null hypothesis" does not mean the null 

hypothesis is false or that the alternate hypothesis is true. (Why?) 
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VI. MISINTERPRETATIONS AND MISUSES OF P-

VALUES 
 

Recall:  

p-value = the probability of obtaining a test statistic at least as 

extreme as the one from the data at hand, assuming:  

• the model assumptions for the inference procedure used 

are all true, and  

• the null hypothesis is true, and  

• the random variable is the same (including the same 

population), and  

• the sample size is the same. 

Notice that this is a conditional probability: The probability that 

something happens, given that various other conditions hold. One 

common mistake is to neglect some or all of the conditions. 
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Example A: Researcher 1 conducts a clinical trial to test a drug for 

a certain medical condition on 30 patients all having that condition.  

• The patients are randomly assigned to either the drug or a 

look-alike placebo (15 each).  

• Neither the patients nor the medical personnel involved know 

which patient takes which drug.  

• Treatment is exactly the same for both groups, except for 

whether the drug or placebo is used.  

• The hypothesis test has null hypothesis "proportion 

improving on the drug is the same as proportion improving 

on the placebo" and alternate hypothesis "proportion 

improving on the drug is greater than proportion improving 

on the placebo."  

• The resulting p-value is p = 0.15.  

 Researcher 2 does another clinical trial on the same drug, 

with the same placebo, and everything else the same except that 

200 patients are randomized to the treatments, with 100 in each 

group. The same hypothesis test is conducted with the new data, 

and the resulting p-value is p = 0.03.  

    Are these results contradictory? No -- since the sample sizes are 

different, the p-values are not comparable, even though everything 

else is the same.  

Indeed, a larger sample size typically results in a smaller p-value. 

The idea of why this is true is illustrated by the case of the z-

test, since large n gives a smaller standard deviation of the 

sampling distribution, hence a narrower sampling 

distribution.  

Comparing p-values for samples of different size is a common 

mistake. 
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Example B: Researcher 2 from Example A does everything as 

described above, but for convenience, his patients are all from the 

student health center of the prestigious university where he works. 

• He cannot claim that his result applies to patients other than 

those of the age and socio-economic background, etc. of the 

ones he used in the study, because his sample was taken from 

a smaller population. 

Example C: Researcher 2 proceeds as in Example A, with a sample 

carefully selected from the population to which he wishes to apply 

his results, but he is testing for equality of the means of an 

outcome variable for the two groups. 

• The hypothesis test he uses requires that the variance of the 

outcome variable for each group compared is the same.  

• He doesn’t check this, and in fact the variance for the 

treatment group is twenty times as large as the variance for 

the placebo group.  

• He is not justified in rejecting the null hypothesis of equal 

means, no matter how small his p-value (unless by some 

miracle the statistical test used is robust to such large 

departures from the model assumption of equality of 

variances.) 
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Another common misunderstanding of p-values is the belief that 

the p-value is "the probability that the null hypothesis is true".  

• This is essentially a case of confusing a conditional probability 

with the reverse conditional probability: In the definition of p-

value, “the null hypothesis is true” is the condition, not the 

event.  

• The basic assumption of frequentist hypothesis testing is that the 

null hypothesis is either true (in which case the probability that 

it is true is 1) or false (in which case the probability that it is true 

is 0) – so unless p = 0 or 1, the p-value couldn’t possibly be the 

probability that the null hypothesis is true. 

 

Note:  In the Bayesian perspective, it makes sense to consider "the 

probability that the null hypothesis is true" as having values other 

than 0 or 1.  

• In that perspective, we consider "states of nature;" in different 

states of nature, the null hypothesis may have different 

probabilities of being true.  

• The goal is then to determine the probability that the null 

hypothesis is true, given the data: P(H0 true | data)  

• This is essentially the reverse conditional probability from the 

one considered in frequentist inference (the probability of the 

data given that the null hypothesis is true – P( data | H0 true). 
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VII: TYPE I ERROR AND SIGNIFICANCE LEVEL 

 

Type I Error: 

Rejecting the null hypothesis when it is in fact true is called a Type 

I error.  

Significance level: 

Many people decide, before doing a hypothesis test, on a 

maximum p-value for which they will reject the null hypothesis. 

This value is often denoted $ (alpha) and is also called the 

significance level.   

When a hypothesis test results in a p-value that is less than the 

significance level, the result of the hypothesis test is called 

statistically significant. 

 

Confusing statistical significance and practical significance is a 

common mistake.  

Example: A large clinical trial is carried out to compare a new 

medical treatment with a standard one. The statistical analysis 

shows a statistically significant difference in lifespan when 

using the new treatment compared to the old one.  

• However, the increase in lifespan is at most three days, 

with average increase less than 24 hours, and with poor 

quality of life during the period of extended life.  

• Most people would not consider the improvement 

practically significant. 

 

Caution: The larger the sample size, the more likely a 

hypothesis test will detect a small difference. Thus it is 

especially important to consider practical significance when 

sample size is large. 
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Connection between Type I error and significance level:     

A significance level $ corresponds to a certain value of the test 

statistic, say t$, represented by the orange line in the picture of a 

sampling distribution below (the picture illustrates a hypothesis 

test with alternate hypothesis "! > 0"). 

 

• Since the shaded area indicated by the arrow is the p-value 

corresponding to t$, that p-value (shaded area) is $.  

• To have p-value less than $, a t-value for this test must be to 

the right of t$.  

• So the probability of rejecting the null hypothesis when it is 

true is the probability that t > t$ , which we have seen is $.  

• In other words, the probability of Type I error is ". 

• Rephrasing using the definition of Type I error:  

The significance level " is the probability of making the 

wrong decision when the null hypothesis is true. 
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Note:  

• $ is also called the bound on Type I error.  

• Choosing a significance level $ is sometimes called setting a 

bound on Type I error. 

 

Common mistake: Claiming that an alternate hypothesis has been 

“proved” because it has been rejected in a hypothesis test.  

 

• This is one instance of the mistake of “expecting too much 

certainty” discussed Monday. 
 

• There is always a possibility of a Type I error; the sample in 

the study might have been one of the small percentage of 

samples giving an unusually extreme test statistic. 

 

• This is why replicating studies (i.e., repeating the analysis 

with another sample) is important. The more (carefully done) 

studies that give the same result, the stronger the overall 

evidence. 

 

• There is also the possibility that the sample is biased or the 

method of analysis was inappropriate; either of these could 

lead to a misleading result. 
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VIII: PROS AND CONS  

OF SETTING A SIGNIFICANCE LEVEL 

• Setting a significance level (before doing inference) has the 

advantage that the analyst is not tempted to chose a cut-off 

on the basis of what he or she hopes is true.  

• It has the disadvantage that it neglects that some p-values 

might best be considered borderline.  

o This is one reason why it is important to report p-values 

when reporting results of hypothesis tests. 

o  It is also good practice to include confidence 

intervals corresponding to the hypothesis test.  

" For example, if a hypothesis test for the difference 

of two means is performed, also give a confidence 

interval for the difference of those means.  

" If the significance level for the hypothesis test is 

.05, then use confidence level 95% for the 

confidence interval. 

 

 

 

 


