	Population	One Simple Random	All Simple Random Samples of size n
		Sample y_1, y_2, \dots, y_n of size n	
Associated Random Variable	Y	Y	\overline{Y}_n The population for \overline{Y}_n is all simple random
, 0.2.20			samples of size n from Y. The value of \overline{Y}_n for a particular simple random sample is the sample mean \overline{y} for that sample.
Associated Distribution	Y <i>has</i> a normal distribution.	The sample is <i>from</i> the (normal) distribution of Y.	The distribution of \overline{Y}_n is called the Sampling Distribution. The theorem tells us that the sampling distribution is normal.
Associated Mean(s)	Population mean μ , also called $E(Y)$, or the expected value of Y, or the expectation of Y	Sample mean $\overline{y} = (y_1 + y_2 + + y_n)/n$ It's an estimate of μ .	Since it's a random variable, \overline{Y}_n also has a mean, $E(\overline{Y}_n)$. The theorem tells us that $E(\overline{Y}_n) = \mu$. (In other words, the random variables Y and \overline{Y}_n have the same mean – i.e., $E(\overline{Y}_n) = E(Y) = \mu$.)
Associated Standard Deviation	Population standard deviation σ	Sample standard deviation $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (\bar{x} - x_i)^2}$ s is an <u>estimate</u> of the population standard deviation σ	Sampling distribution standard deviation. The theorem tells us that the standard deviation of the sampling standard deviation is $\sqrt[\sigma]{\sqrt{n}}$.