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II. DATA SNOOPING 

 

Remember Jelly Beans: http://xkcd.com/882/ 

 

Data snooping refers to statistical inference that the researcher 

decides to perform after looking at the data  

• Also known as post protocol analysis or post hoc analysis 

• Contrast with pre-planned inference (“per protocol 

analysis”), which the researcher plan has planned before 

looking at the data.  

Data snooping can be done: 

• professionally and ethically, or  

• misleadingly and unethically, or  

• misleadingly out of ignorance.  

Misleading data snooping out of ignorance is a common mistake 

in using statistics.  
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The problems with data snooping are essentially the problems of 

multiple inference.  

• If you are likely to engage in data snooping, apportion some 

part of the overall Type I error rate to pre-planned inference 

and some part to data snooping. 

o For example, if you plan to have overall Type I error rate 

(FWER) 0.05, you might decide to use FWER 0.04 for 

pre-planned inference, and FWER 0.01 for data snooping. 

• One way in which researchers unintentionally obtain 

misleading results by data snooping is in failing to account 

for all of the data snooping they engage in.  

o In particular, in accounting for Type I error when data 

snooping, you need to count not just the actual hypothesis 

tests performed, but also all comparisons looked at when 

deciding which post hoc (i.e., not pre-planned) hypothesis 

tests to try. 

o For lots of amusing examples, see Tyler Vigen’s website 

http://tylervigen.com/. The site allows you to choose two 

variables from a very large list and find their correlation. I 

got tired counting at several hundred, but I would guess 

that he has listed over 1000 variables. That makes around 

1,000,000 pairs of variables. If you did significance tests 

(at a .05 individual significance rate) for correlation for all 

those pairs, you would expect about 50,000 to be 

significant – so it shouldn’t be surprising if many of these 

50,000 pairs are indeed highly correlated. 
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A More Serious Example:  A group of researchers plans to 

compare three dosages of a drug in a clinical trial.   

• There’s no pre-planned intent to compare effects broken 

down by sex, but the sex of the subjects is recorded.  

• The researchers have decided to have an overall Type I 

error rate of 0.05, allowing 0.03 for the pre-planned 

inferences and 0.02 for any data snooping they might 

decide to do.  

• The pre-planned comparison shows no statistically 

significant difference between the three dosages when the 

data are not broken down by sex.  

• However, since the sex of the patients is known, the 

researchers decide to look at the outcomes broken down 

by combination of sex and dosage. 

o They notice that the results for women in the high-

dosage group look much better than the results for 

the men in the low dosage group, and perform a 

hypothesis test to check that out.  

• In accounting for Type I error, the researchers need to 

take the number of data-snooping inferences performed as 

15, not one.  

o The reason is that they’ve looked at fifteen 

comparisons:  there are 3!2 = 6 dosage!sex 

combinations, and hence (6!5)/2 = 15 pairs 

of dosage!sex combinations.  

o Thus the significance level for the post hoc test 

should not be 0.02, but (if the Bonferroni method is 

used) 0.02/15.  

 

See the Appendix for more detailed suggestions on data snooping 

professionally and ethically. 
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III: P-HACKING, THE REPLICABILITY CRISIS,  

AND P-CURVING 

The term p-hacking was recently introduced by Simonsohn et al 

(2013) to refer to a common practice that involves data snooping 

and aspects of the file-drawer problem:  

Performing many hypothesis tests in analyzing the data for a 

study, but when publishing the results of the study, omitting 

mention of those tests that were not statistically significant. 

 

So in p-hacking, researchers don’t relegate entire studies to 

“the file-drawer” --  just parts of studies. 

 

P-hacking (like may other common mistakes discussed here) 

contributes to what has become known as the replicability 

crisis:  

The large number of published “findings” that have never 

been confirmed by a follow-up study.  

 

• Many such results might indeed be “irreproducible results.”  

• Ioannidis’ paper, “Why Most Published Research Findings 

Are False,” (Ioannidis 2005) brought widespread attention to 

the replicability crisis. 

• Although there was initial skepticism and criticism of 

Ioannidis’ claims, scientists have increasingly been 

recognizing the lack of replications, and the practices 

contributing to this, as a serious problem. 

o See, e.g., Pashler and Harris (2012) 
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 Researchers can p-hack in a variety of ways, many of which fall 

under the category of data snooping. These include: 

• Collecting data until a statistically significant result is 

obtained. 

• Deciding to exclude outliers on the basis of whether or not 

doing so will give a statistically significant result. 

• Trying out more than one measure of a quantity of interest, 

and then selecting one that gives statistical significance when 

others do not.  

• First trying an analysis without breaking down into 

subgroups, then if results are not statistically significant, 

analyzing the data broken down into subgroups (e.g., 

gender), but reporting only the statistically significant results.  

• Trying various methods of “binning” (discussed below) until 

getting one that gives a statistically significant result. 

 

Like data-snooping, p-hacking is often done out of ignorance that 

it gives deceptive results.  

o There is also a gray area/slippery slope where researchers 

feel impelled to “make the most” of their data.  

o This can also lead to “spinning,” which might also include 

describing results that are not statistically significant as 

“promising,” or results that are questionably practically 

significant as “strong” rather than “modest.” 

o For a real example of p-hacking, plus discussion of spinning 

and the file drawer problem, see Couzin-Frankel (2013) 
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Contrived example: The course description for this SSI course 

included the sentence, 

 

“In 2011, psychologists Simmons, Nelson and Simonsohn 

brought further attention to this topic by using methods 

common in their field to “show” that people were almost 1.5 

years younger after listening to one piece of music than after 

listening to another.”   

 

Here are some of the things these authors did to produce this 

nonsensical conclusion: 

• Lots of data snooping.  

o In particular, they gathered information on several 

covariates, but adjusted for only one (father’s age), in 

the report. 

• Lack of transparency in reporting results. 

o In particular, they didn’t mention that they had gathered 

the information on other covariates and cherry-picked 

only the one to adjust for. 

• The sample size was not set in advance.  

o There was no consideration of power in deciding on 

sample size. 

o Instead, the researchers checked every few observations 

and stopped when the results reached a preset 

significance level. 

o The sample size was too small to give reasonable 

power.  

• There was no adjusting for multiple testing despite all the 

multiple inference involved in data snooping and in deciding 

when to stop sampling. 
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Simonsohn et al (2013) have proposed a method, called p-curving, 

to help detect the presence of p-hacking. 

 

• The purpose of p-curving is [to try?] “to rule out selective 

reporting as a likely explanation for a set of statistically 

significant findings.” (p. 5) – just as the purpose of 

significance testing is [to try?] “to rule out chance as a likely 

explanation for an observed effect” (p. 5) 

 

• A p-curve is “the distribution of statistically significant p-

values for a set of independent findings” (p. 3) 

 

•  The utility of p-curves uses results in mathematical statistics 

saying that a p-curve will have a different shape when the 

null hypothesis is false than when the null hypothesis is true, 

and that the shape will also depend on effect size and sample 

size. 

 

o The net result is that p-hacking will produce alterations 

in the shape of the p-curve. 

 

• The authors have also produced an online app and user’s 

guide at http://www.p-curve.com/ 

 

• However, since the technique is still fairly new, there may be 

critiques yet to come.   
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IV: USING AN INAPPROPRIATE METHOD OF ANALYSIS 
 

"Assumptions behind models are rarely articulated, let alone 

defended. The problem is exacerbated because journals tend to 

favor a mild degree of novelty in statistical procedures. Modeling, 

the search for significance, the preference for novelty, and the lack 

of interest in assumptions -- these norms are likely to generate a 

flood of nonreproducible results." 

David Freedman, Chance 2008, v. 21 No 1, p. 60 

 

Recall: Each frequentist inference technique (hypothesis test or 

confidence interval) involves model assumptions. 

• Different techniques have different model assumptions.  

• The validity of the technique depends (to varying extents) on 

whether or not the model assumptions are true for the context 

of the data being analyzed.  

• Many techniques are robust to departures from at least some 

model assumptions.  

o This means that if the particular assumption is not too 

far from true, then the technique is still approximately 

valid. 

o Illustration: Rice Virtual Lab in Statistics Robustness 

Simulation  
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Thus, when using a statistical technique, it’s important to ask: 

• What are the model assumptions for that technique? 

• Is the technique robust to some departures from the model 

assumptions? 

• What reason is there to believe that the model assumptions 

(or something close enough, if the technique is robust) are 

true for the situation being studied? 

Neglecting these questions is a very common mistake in using 

statistics.  

• Sometimes researchers check only some of the assumptions, 

perhaps missing some of the most important ones. 

Unfortunately, the model assumptions vary from technique to 

technique, so there are few if any general rules. One general rule of 

thumb, however is: 
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Techniques are least likely to be robust to departures from 

assumptions of independence. 

• Recall: Assumptions of independence are often phrased in 

terms of "random sample" or "random assignment", so these 

are very important. 

• One exception is that, for large enough populations, sampling 

without replacement is good enough, even though 

"independent" technically means sampling with replacement. 

• Variance estimates depend strongly on the assumption of 

independence, so results can be very misleading when 

observations are not independent. 

Note: Many techniques are most robust to violations of normality 

assumptions, at least if the sample size is large and the distribution 

is not strongly skewed or multimodal. 

• This is because test statistics are often sums or linear 

combinations, which by “the” Central Limit Theorem are 

often approximately normally distributed. (More below) 
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General advice and cautions: 

• You may need to look hard to find model assumptions and 

information about robustness! 

o For basic techniques, DeVeaux, Velleman and Bock  

Statistic, Data and Models is quite good on model 

assumptions and robustness. 

o For other techniques, try searching for review articles in 

journals such as Statistical Science, The American 

Statistician, or Journal of the American Statistical 

Society. 

• Sometimes simulations (if well done) can help. For example: 

o Simulations might help decide how plausible it is that 

your data come from a certain distribution. 

o Simulations can sometimes help get a feel for how 

robust a procedure is to departures from model 

assumptions. 

• Do not automatically use default settings in software. 
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How do I know whether or not model assumptions are satisfied? 

Unfortunately, there are no one-size-fits-all methods, but here are 

some rough guidelines: 

1. When selecting samples or dividing into treatment groups, be 

very careful in randomizing according to the requirements of 

the method of analysis to be used.  

• Remember that “random” is not the same as “haphazard”!  

• Be careful to check the precise randomizing assumptions 

of the study design/method of analysis you plan to use.  

o For example, there are many types of ANOVA 

analyses, each with its own requirements for study 

design, including randomization.  

2. Sometimes (not too often) model assumptions can be 

justified plausibly by well-established facts, mathematical 

theorems, or theory that’s well supported by sound empirical 

evidence. 

• Here, "well established" means well established by sound 

empirical evidence and/or sound mathematical reasoning.  

• This is not the same as "well accepted," since sometimes 

things may be well accepted without sound evidence or 

reasoning. 

• More below. 
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3. Sometimes a rough idea of whether or not model assumptions 

might fit can be obtained by plotting the data or residuals 

obtained from a tentative use of the model.  

• Unfortunately, these methods are typically better at telling 

you when the model assumption does not fit than when it 

does. 

• Some examples, guidelines, and cautions below.  

• But always remember “The Big Picture”: 
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Robert Kass’ Big Picture of Statistical Inference 

 

In Kass (2011, p. 6, Figure 1), Robert Kass has proposed the 

following diagram to depict the “big picture” in using statistics: 

 

 REAL WORLD   THEORETICAL WORLD 

 

       Scientific Models 

 

  Data 

 

       Statistical Models 

 

 

    Conclusions 

 

Points this picture is intended to show include: 

• Both statistical and scientific models are abstractions, 

living in the “theoretical” world, as distinguished from 

the “real” world where data lie. 

• Conclusions straddle these two worlds: conclusions 

about the real world typically are indirect, via the 

scientific models.  

• “When we use a statistical model to make a statistical 

inference we implicitly assert that the variation 

exhibited by data is captured reasonably well by the 

statistical model, so that the theoretical world 

corresponds reasonably well to the real world.” (p. 5) 

• Thus “careful consideration of the connection between 

models and data is a core component of … the art of 

statistical practice…” (p. 6) 

 

For a recent accessible discussion of problems with model 

assumptions in a topic of current wide interest (value-added 

models in education), see Wainer (2011). 
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V. METHODS FOR CHECKING MODEL ASSUMPTIONS 

A. Examples of Checking Model Assumptions Using Well-

established Facts or Theorems 
 

Recall:  

• This is not possible very often. 

• Here, "well established" means well established by empirical 

evidence and/or sound mathematical reasoning.  

• This is not the same as "well accepted," since sometimes 

things may be well accepted without sound evidence or 

reasoning. 
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1. Using laws of physics 

 

Hooke's Law says that when a weight that is not too large (below 

what is called the "elastic limit") is placed on the end of a spring, 

the length of the (stretched) spring is approximately a linear 

function of the weight.  

• This tells us that if we do an experiment with a spring by 

putting various weights (below the elastic limit) on it and 

measuring the length of the spring, we are justified in using a 

linear model, 

 

    Length = A!Weight + B 

 

 

 

 

 

 

 

 

 

 

 

 

 



 19 

2. Using the Central Limit Theorem 

One form of The Central Limit Theorem says that for most 

distributions, a linear combination (e.g., the sum or the mean) of a 

large enough number of independent random variables is 

approximately normal.  

• Thus, if a random variable in question is the sum of 

independent random variables, then it’s usually safe to 

assume that the variable is approximately normal.  

• For example, adult human heights (at least if we restrict to 

one sex) are the sum of many heights: the heights of the 

ankles, lower legs, upper legs, pelvis, many vertebrae, and 

head.  

o Empirical evidence suggests that these heights vary 

roughly independently (e.g., the ratio of height of lower 

leg to that of upper leg varies considerably).  

o Thus it’s plausible by the Central Limit Theorem that 

human heights are approximately normal.  

o This in fact is supported by empirical evidence. 

• Caution: “Most” is not “all.” There are some distributions for 

which the central limit theorem is not valid. One notable 

exception is distributions which are “heavy-tailed” (also 

called leptokurtic). Such distributions occur in certain 

situations, such as seed dispersal in biology. 

o Try it on the Sampling Distribution demo. 
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• The Central Limit Theorem can also be used to reason that 

some distributions are approximately lognormal -- that is, 

that the logarithm of the random variable is normal.  

o For example, the distribution of a pollutant might be 

determined by successive independent dilutions of an 

original emission.  

o This translates into mathematical terminology by saying 

that the amount of pollution (call this random variable 

Y) in a given small region is the product of independent 

random variables.  

o Thus logY is the sum of independent random variables.  

o If the number of successive dilutions is large enough, 

the reasoning above shows that logY is approximately 

normal, and hence that Y is approximately lognormal. 
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B. Using Plots to Check Model Assumptions  
 

Overall Cautions:  

1. Unfortunately, these methods are typically better at telling 

you when the model assumption does not fit than when it does. 

 

2. There’s inherently an element of subjectivity in using model-

checking plots.  

o Some people are more likely than others to “see things 

that aren’t really there.”  

o Buja et al (2009) have recently proposed some protocols 

for taking this into account.  

o The smaller the sample size, the more of a problem this 

will be. 

3. Different techniques have different model assumptions, so 

will need different model checking plots. 

o Be sure to consult a good reference for the particular 

technique you are considering using.  
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General Rule of Thumb:  

1. First check any independence assumptions;  

2. then any equal variance assumption;  

3. then any assumption on distribution (e.g., normal) of 

variables. 

Rationale: Techniques are usually least robust to departures 

from independence, and most robust to departures from 

normality.  

• See van Belle (2008), pp. 173 - 177 and the references 

given there for more detail. 
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C. Suggestions and Guidelines for Checking 

Independence Assumptions  

Independence assumptions are usually formulated in terms of error 

terms rather than in terms of the outcome variables.  

• For example, in simple linear regression, the model 

equation is  

Y = " + #x + $,     

      where Y is the outcome (response) variable and $ 

 denotes the error term (also a random variable).  

• It’s the error terms that are assumed to be independent, 

not the values of the response variable.  

• In more detail: The model assumptions are 

o E(Y|x) = " + #x 

o For each x, $ is normal with mean 0 and standard 

deviation %. 

o The values of $ for different x’s are independent.  

 

We do not know the values of the error terms $, so we can only plot 

the residuals ei (defined as the observed value yi minus the fitted 

value, according to the model), which approximate the error terms.  
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Rule of Thumb: To check independence, plot residuals against:  

• Any time variables present (e.g., order of observation)  

• Any spatial variables present, 

• Any variables used in the technique (e.g., factors, 

regressors)  

A pattern that’s not random suggests lack of independence. 

Rationale: Dependence on time or on spatial variables is a 

common source of lack of independence, but the other plots 

might also detect lack of independence. 

 

Comments:  

 

1. Since time or spatial correlations are so frequent, it is important 

when making observations to record any time or spatial variables 

that could conceivably influence results.  

 

• This not only allows you to make the residual plots to detect 

possible lack of independence, but also allows you to change 

to a technique incorporating additional time or spatial 

variables if lack of independence is detected in these plots. 

 

2. Since it’s known that the residuals sum to zero (in least squares 

regression), they’re not independent, so the plot is really a very 

rough approximation.  

 

3. Some models only require that errors are uncorrelated, not 

independent; model checks are the same as for independence. 

 

 

See the Appendix for some suggestions for checking model 

assumptions of equal variance and of normality. 
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Checking for Linearity  

When considering a simple linear regression model, it’s important 

to check the linearity assumption -- i.e., that the conditional means 

of the response variable are a linear function of the predictor 

variable.  

Graphing the response variable vs. the predictor can often give a 

good idea of whether or not this is true.  

However, one or both of the following refinements may be needed: 

1. Plot residuals (instead of response) vs. predictor.  

• A non-random pattern suggests that a simple linear model 

is not appropriate; you may need to transform the 

response or predictor, or add a quadratic or higher term to 

the mode. 

 

2. Use a scatterplot smoother such as lowess (also known as 

loess) to give a visual estimation of the conditional mean.  

• Such smoothers are available in many regression software 

packages.  

• Caution:  You may need to choose a value of a 

smoothness parameter. Making it too large will over 

smooth; making it too small will not smooth enough. 

   

When considering a linear regression with just two terms, plotting 

response (or residuals) against the two terms (making a three-

dimensional graph) can help gauge suitability of a linear model, 

especially if your software allows you to rotate the graph. 
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**Caution: It’s not possible to gauge from scatterplots whether a 

linear model in more than two predictors is suitable.  

• One way to address this problem is to try to transform the 

predictors to approximate multivariate normality.  

o See, e.g., Cook and Weisberg (1999), pp. 324 – 329. 

• Multivariate normality will ensure not only that a linear 

model is appropriate for all (transformed) predictors together, 

but also that a linear model is appropriate even when some 

transformed predictors are dropped from the model. 
 
 

Note: It’s a common mistake to assume that if a linear model fits 

with all predictors included, then a linear model will still fit when 

some predictors are dropped. (Example in Appendix)  
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VI. SOME SPECIFIC SITUATIONS WHERE 

MISTAKES INVOLVING MODEL ASSUMPTIONS  

ARE COMMON 

A. Comparing groups in studies with drop-outs (Intent-to-treat 

analysis) 

B. Using a two-sample test comparing means when cases are 

paired (and generalizations) 

C. Not distinguishing between fixed and random factors 

D. Analyzing data without regard to how they were collected 

E. Pseudoreplication  

F. Mistakes in regression  

For more discussion of some inappropriate methods of analysis, 

see: 

• References in the Appendix 

• Harris et al (2009)  

• The Common Mistakes in Using Statistics website at 

http://www.ma.utexas.edu/users/mks/statmistakes/TOC.html 

 

 

 

 

 

 

 28 

A. Intent to Treat Analysis: Comparing groups when there are 

Dropouts 
 

The Problem: In many forms of comparison of two treatments 

involving human subjects (or animals or plants), there are subjects 

who do not complete the treatment.  

• They may die, move away, encounter life circumstances that 

take priority, or just decide for whatever reason to drop out of 

the study or not do all that they are asked.  

• It is tempting to just analyze the data for those completing the 

protocol, essentially ignoring the dropouts. This is usually a 

serious mistake, for two reasons: 

1. In a good study, subjects should be randomized to treatment.  

o Analyzing the data for only those who complete the 

protocol destroys the randomization, so that model 

assumptions are not satisfied.  

o To preserve the randomization, outcomes for all subjects 

assigned to each group (whether or not they stick with the 

treatment) need to be compared. This is called intent-to-

treat (or intention-to-treat, or ITT) analysis. 
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2. Intent-to-treat analysis is usually more informative for 

consumers of the research.  

• For example, in studying two drug treatments, dropouts for 

reasons not related to the treatment can be expected to be, on 

average, roughly the same for both groups.  

• But if one drug has serious side-effects that prompt patients 

to discontinue use, that would show up in the drop-out rate, 

and be important information in deciding which drug to use 

or recommend. 

Reason 1 (and sometimes also reason 2) also applies when 

treatments are applied to animals, plants, or even objects. 

 

For more information on intent-to-treat analysis, see Freedman 

(2005, pp. 5, 15), Freedman (2006), van Belle (2008, pp. 156 – 

157), and Moher et al (2010) 
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B. Using a Two-Sample Test Comparing Means when Cases 

Are Paired (and similar problems) 

One of the model assumptions of the two-sample t-tests for means 

is that the observations between groups, as well as within groups, 

are independent.  

• Thus if samples are chosen so that there is some natural 

pairing, then the members of pairs are not independent, so the 

two-sample t-test is not appropriate. 

Example 1: A random sample of heterosexual married couples is 

chosen. Each spouse of each pair takes a survey on marital 

happiness. The intent is to compare husbands' and wives' scores.  

• The two-sample t-test would compare the average of the 

husband's scores with the average of the wives' scores. 

• However, it is not reasonable to assume that the samples of 

husbands and wives are independent -- some factors 

influencing a particular husband's score are likely to 

influence his wife's score, and vice versa.  

• Thus the independence assumption between groups for a two-

sample t-test is violated.  

• In this example, we can instead consider the individual 

differences in scores for each couple: (husband's score) - 

(wife's score). If the questions of interest can be expressed in 

terms of these differences, then we can consider using the 

one-sample t-test (or perhaps a non-parametric test if the 

model assumptions of that test are not met). 
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Example 2: A test is given to each subject before and after a 

certain treatment. (For example, a blood test before and after 

receiving a medical treatment; or a subject matter test before and 

after a lesson on that subject) 

• This poses the same problem as Example 1: The "before" test 

results and the "after" test results for each subject are not 

independent, because they come from the same subject. 

• The solution is the same: analyze the difference in scores. 

• Example 2 is a special case of what is called repeated 

measures: some measurement is taken more than once on the 

same unit.  

o Because repeated measures on the same unit are not 

independent, the analysis of such data needs a method 

that takes this lack of independence into account.  

o There are various ways to do this; just which one is best 

depends on the particular situation. 
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Similar Problem: Hierarchical (multilevel) situations may violate 

model assumptions of independence  

Example: Researchers are studying how well scores on a 

standardized eighth grade math exam predict performance on an 

Algebra I end-of-course exam for ninth-grade students.  

• They have data from an entire school district.  

• They propose to analyze it by simple linear regression. 

• However, standard regression methods of inference assume 

that observations are uncorrelated, whereas observations 

from students in the same school can be expected to be 

correlated. 

• Instead, the researchers need to use a multilevel (also called 

hierarchical) model that takes into account that observations 

from the same school may be correlated. 
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C. Inappropriately Designating a Factor as Fixed or Random 

In Analysis of Variance and Multilevel Modeling, there are two 

types of factors: fixed effect and random effect.  

Fixed effect factors and random effect factors are analyzed 

differently, so it is important to classify a factor correctly. 

Correct classification of a factor as fixed or random depends on  

• the context of the problem,  

• the questions of interest, and  

• how the data are gathered, and 

• the method of analysis  

Here are the differences for Analysis of Variance. (Classifications 

for different methods of Multilevel Modeling may vary.) 

 

Fixed effect factor: Data has been gathered from all the levels of 

the factor that are of interest. 

Example: The purpose of an experiment is to compare the 

effects of three specific dosages of a drug on the response.  

• "Dosage" is the factor.  

• The three specific dosages in the experiment are the 

levels. 

• There is no intent to say anything about other dosages. 

• Therefore this is a fixed factor. 

• The analysis will estimate the effect of each dosage. 
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Random effect factor:  

• The factor has many possible levels.  

• All possible levels are of interest. 

• Only a random sample of levels is included in the data. 

Example: A large manufacturer of widgets is interested in 

studying the effect of machine operator on the quality of the 

final product. The researcher selects a random sample of 

operators from the large number of operators at the various 

facilities that manufacture the widgets and collects data on just 

these operators.  

• The factor is "operator."  

• Each operator is a level of the factor.  

• Since interest is not just in the operators for whom data is 

gathered, this is a random factor. 

• The analysis will not estimate the effect of each of the 

operators in the sample, but will instead estimate the 

variability attributable to the factor "operator". 

 

(See Appendix for more discussion and a possible confusion 

involving terminology) 
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The appropriate statistical analysis depends on whether the 

factor is treated as fixed or as random. That is, fixed and random 

effects require different models 

• Consequently, inferences may be incorrect if the factor is 

classified inappropriately.  

• Mistakes in classification are most likely to occur when more 

than one factor is considered in the study. 

Example: Two surgical procedures are being compared.  

• Patients are randomized to treatment.  

• Five different surgical teams are used.  

• To prevent possible confounding of treatment and surgical 

team, each team is trained in both procedures, and each team 

performs equal numbers of surgery of each of the two types.  

• Since the purpose of the experiment is to compare the 

procedures, the intent is to generalize to other surgical teams.  

• Thus surgical team should be considered as a random factor, 

not a fixed factor. 
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Comments:  

• This example can help understand why inferences might be 

different for the two classifications of the factor: Asserting 

that there is a difference in the results of the two procedures 

regardless of the surgical team is a stronger statement than 

saying that there is a difference in the results of the two 

procedures just for the teams in the experiment. 

• Technically, the levels of the random factor (in this case, the 

five surgical teams) used in the experiment should be a 

random sample of all possible levels.  

o In practice, this is usually impossible, so the random 

factor analysis is usually used if there is reason to 

believe that the teams used in the experiment could 

reasonably be a random sample of all surgical teams 

who might perform the procedures.  

o However, this assumption needs careful thought to 

avoid possible bias.  

o For example, the conclusion would be sounder if it 

were limited to surgical teams that were trained in both 

procedures in the same manner and to the same extent, 

and who had the same surgical experiences, as the five 

teams actually studied. 

 

(See Appendix for additional comments.) 
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D. Analyzing Data without Regard to How They Were 

Collected 

Using a two-sample t-test when observations are paired (see 

above) is one example of this. Here’s another: 

 

Example: [See Potcner and Kowalski (2004) for data and details.] 

An experiment was conducted to study the effect of two factors 

(pretreatment and stain) on the water resistance of wood.  

• Two types of pretreatment and four types of stain were 

considered.  

• For reasons of practicality and economy, the experiment was 

conducted with a split-plot design as follows:  

o Six entire boards were the whole plots.  

o One pretreatment was applied to each board, with the 

two pretreatments randomly assigned to the six boards 

(three boards per pretreatment).  

o Then each pre-treated board was cut into four smaller 

pieces of equal size (these were the split-plots).  

o The four pieces from each entire board were randomly 

assigned to the four stains.  

o The water resistance of each of the 24 smaller pieces 

was measured; this was the response variable. 

• The following chart shows the p-values of the three 

significance tests involved if the correct split-plot analysis is 

used, and also if an incorrect analysis (assuming a crossed 

design, with the 6 treatment combinations randomly assigned 

to the 24 smaller pieces of wood, with 4 small pieces per 

treatment combination) is used.  

• Note that the conclusions from the two analyses would be 

quite different!  
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p-values Correct (Split Plot) 

Analysis 

Incorrect 

(Crossed Design) 

Analysis 

Interaction 0.231 0.782 

Pretreatment 0.115 0.002 

Stain 0.006 0.245 

 

 

Additional lessons to learn from this example: 

• If you are using data collected by someone else, be sure to 

find out how it was collected; that might affect how you 

need to analyze it. 

• If you are making data available to others, be sure to 

include a description of how the data was obtained.  

 

 

Some of the many considerations to take into account in deciding 

on an appropriate method of analysis include: 

• The sampling or randomization method  

• Whether or not there was blocking in an experimental design 

• Whether factors are nested or crossed 

• Whether factors are fixed or random 

• Pseudoreplication (See below)  
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E. PSEUDOREPLICATION  

The term pseudoreplication was coined by Hurlbert (1984,p. 187) 

to refer to 

 "the use of inferential statistics to test for treatment effects 

with data from experiments where either treatments are not 

replicated (though samples may be) or replicates are not 

statistically independent."
 

 

His paper concerned ecological field experiments, but 

pseudoreplication can occur in other fields as well. 

 

In this context, replication refers to having more than one 

experimental (or observational) unit with the same treatment. Each 

unit with the same treatment is called a replicate.  

 

Note: There are other uses of the word replication -- for 

example, repeating an entire experiment is also called 

replication; each repetition of the experiment is called a 

replicate. This meaning is related to the one given above: If 

each treatment in an experiment has the same number r of 

replicates (in the sense given above), then the experiment can be 

considered as r replicates (in the second sense) of an experiment 

where each treatment is applied to only one experimental unit. 
 

Heffner et al (1996, p. 2558) distinguish a pseudoreplicate from a 

true replicate, which they characterize as 

 

 "the smallest experimental unit to which a treatment is 

independently applied." 
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Most models for statistical inference require true replication.  

• True replication permits the estimation of variability within a 

treatment.  

• Without estimating variability within treatments, it is 

impossible to do statistical inference.  

 

Illustration: Consider comparing two drugs by trying drug A on 

person 1 and drug B on person 2.   

• Drugs typically have different effects in different people.  

• So this simple experiment will give us no information about 

generalizing to people other than the two involved.  

• But if we try each drug on several people, then we can obtain 

some information about the variability of each drug, and use 

statistical inference to gain some information on whether or 

not one drug might be more effective than the other on 

average. 
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True replicates are often confused with repeated measurements or 

with pseudoreplicates. The following illustrate some of the ways 

this can occur. 

 

Examples: 

 

1. Suppose a blood-pressure lowering drug is administered to a 

patient, and then the patient's blood pressure is measured twice.  

• This is a repeated measurement, not a replication.  

• It can give information about the uncertainty in the 

measurement process, but not about the variability in the 

effect of the drug.  

• On the other hand, if the drug were administered to two 

patients, and each patient's blood pressure was measured 

once, we can say the treatment has been replicated, and the 

replication may give some information about the variability 

in the effect of the drug. 

 

2. A researcher is studying the effect on plant growth of different 

concentrations of CO2 in the air.   

• He needs to grow the plants in a growth chamber so that 

the CO2 concentration can be set.  

• He has access to only two growth chambers, but each one 

will hold five plants.   

• However, since the five plants in each chamber share 

whatever conditions are in that chamber besides the CO2 

concentration, and in fact may also influence each other, the 

individual plants do not constitute independent replicates – 

they’re pseudoreplicates.  

• The growth chambers are the experimental units: the 

treatments (CO2 concentrations) are applied to the growth 

chambers, not to the plants independently.  
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3. Two fifth-grade math curricula are being studied.  

• Two schools have agreed to participate in the study.  

• One is randomly assigned to use curriculum A, the other to 

use curriculum B.  

• At the end of the school year, the fifth-grade students in each 

school are tested and the results are used to do a statistical 

analysis comparing the two curricula.  

• There is no true replication in this study; the students are 

pseudo-replicates.  

• The schools are the experimental units; they, not the students, 

are randomly assigned to treatment.  

• Within each school, the test results (and the learning) of the 

students in the experiment are not independent; they’re 

influenced by the teacher and by other school-specific factors 

(e.g., previous teachers and learning, socioeconomic 

background of the school, etc.).  
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Consequences of doing statistical inference using 

pseudoreplicates rather than true replicates 

 

Variability will probably be underestimated. This will result in: 

• Confidence intervals that are too small. 

• An inflated probability of a Type I error (falsely rejecting a 

true null hypothesis).  

Comments  

• Note that in Example 2, there’s no way to distinguish 

between effect of treatment and effect of growth chamber; 

thus the two factors (treatment and growth chamber) are 

confounded. Similarly, in Example 3, treatment and school 

are confounded. 

• Example 3 may also be seen as applying the two treatments 

to two different populations (students in one school and 

students in the other school) 

• Observational studies are particularly prone to 

pseudoreplication. 

• Regression can sometimes account for lack of replication, 

provided data are close enough to each other.  

o The rough idea is that the responses for nearby values 

of the explanatory variables can give some estimate of 

the variability.  

o However, having replicates is better. 

(See Appendix for suggestions on dealing with pseudoreplication.) 
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F. MISTAKES IN REGRESSION 

There are many common mistakes involved in regression! 

Only one will be discussed here; some others will be listed at the 

end of these notes, with a web reference to more discussion. 

Overfitting 

With four parameters I can fit an elephant and with five I 

can make him wiggle his trunk. 

John von Neumann 

If we have n distinct x values and corresponding y values for each, 

it is possible to find a curve going exactly through all n resulting 

points (x, y); this can be done by setting up a system of equations 

and solving simultaneously.  

• But this is not what regression methods typically are 

designed to do.  

• Most regression methods (e.g., least squares) estimate 

conditional means of the response variable given the 

explanatory variables.   

• They’re not expected to go through all the data points. 
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For example, with one explanatory variable X (e.g., height) and 

response variable Y (e.g., weight), if we fix a value x of X, we 

have a conditional distribution of Y given X = x (e.g., the 

conditional distribution of weight for people with height x).  

• This conditional distribution has an expected value 

(population mean), which we will denote E(Y|X = x) (e.g., 

the mean weight of people with height x).  

• This is the conditional mean of Y given X = x. It depends on 

x -- in other words, E(Y|X = x) is a mathematical function of 

x.  

In least squares regression (and most other kinds of regression), 

one of the model assumptions is that the conditional mean function 

has a specified form.  

• Then we use the data to find a function of x that 

approximates the conditional mean function E(Y|X = x).  

• This is different from, and subtler (and harder) than, finding a 

curve that goes through all the data points. 
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Example: To illustrate, I’ve used simulated data:  

• Five points were sampled from a joint distribution where the 

conditional mean E(Y|X = x) is known to be x2, and where 

each conditional distribution Y|(X = x) is normal with 

standard deviation 1.  

• I used least squares regression to estimate the conditional 

means by a quadratic curve y = a +bx + cx2. That is, I used 

least squares regression, with  

 

E(Y|X=x) = ! +"x + #x2 

 

as one of the model assumptions, to obtain estimates a, b, and 

c of !, ", and # (respectively), based on the data. 

o There are other ways of expressing this model 

assumption, for example,  

  y = ! +"x + #x2 + $, 
 or 

  yi = ! +"xi + #xi
2 + $i 

 

The graph below shows: 

• The five data points in red (one at the left is mostly hidden by 

the green curve) 

• The curve y = x2 of true conditional means (black) 

• The graph of the calculated regression equation (in green).  
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Note that: 

• The points sampled from the distribution do not lie on the 

curve of means (black).  

• The green curve is not exactly the same as the black curve, 

but is close.  

• In this example, the sampled points were mostly below the 

curve of means.  

• Since the regression curve (green) was calculated using just 

the five sampled points (red), the red points are more evenly 

distributed above and below it (green curve) than they are in 

relation to the real curve of means (black).  
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Note: In a real world example, we would not know the conditional 

mean function (black curve) -- and in most problems, would 

not even know in advance whether it is linear, quadratic, or 

something else.  

• Thus, part of the problem of finding an appropriate 

regression curve is figuring out what kind of function it 

should be. 

 

Continuing with this example, if we (naively) try to get a "good 

fit" by trying a quartic (fourth degree) regression curve -- that is, 

using a model assumption of the form  

 E(Y|X=x) = ! +"1x + "2x
2 +  "3x

3 +  "4x
4,  

we get the following picture: 
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You can barely see any of the red points in this picture.  

• That’s because they’re all on the calculated regression curve 

(green).  

• We’ve found a regression curve that fits all the data!  

• But it’s not a good regression curve -- because what we’re 

really trying to estimate by regression is the black curve 

(curve of conditional means).  

• We’ve done a rotten job of that; we’ve made the mistake of 

over-fitting. We’ve fit an elephant, so to speak. 

 

If we had instead tried to fit a cubic (third degree) regression curve 

-- that is, using a model assumption of the form  

 E(Y|X=x) = ! +"1x + "2x
2 +  "3x

3,  

we’d get something more wiggly than the quadratic fit and less 

wiggly than the quartic fit.  

• However, it would still be over-fitting, since (by 

construction) the correct model assumption for these data 

would be a quadratic mean function.  

 

See the Appendix for suggestions on trying to avoid overfitting. 
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Other Common Mistakes in Using Regression  

For further discussion of these mistakes, see links from 

http://www.ma.utexas.edu/users/mks/statmistakes/regression.h

tml 

• Using Confidence Intervals when Prediction Intervals Are 

Needed. 

• Over-interpreting High R
2
 

• Mistakes in Interpretation of Coefficients 

o Interpreting a coefficient as a rate of change in Y instead 

of as a rate of change in the conditional mean of Y. 

o Not taking confidence intervals for coefficients (i.e., 

uncertainty of estimation of coefficients) into account 

o Interpreting a coefficient that’s not statistically significant 

o Interpreting coefficients in multiple regression with the 

same language used for a slope in simple linear regression. 

o Neglecting the issue of multiple inference when dealing 

with more than one coefficient in the same data set. 

 

• Mistakes in Selecting Terms 

 

• Assuming linearity is preserved when variables are dropped. 

(See also Appendix.) 

 

•  Problems involving stepwise model selection procedures. 
 

See also http://www.jerrydallal.com/LHSP/important.htm for 

another common mistake in using regression. 
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If you have further questions, feel free to: 

 

Consult my website Common Mistakes in Using Statistics (table of 

contents at 

http://www.ma.utexas.edu/users/mks/statmistakes/TOC.html) 

 

Email me at mks@math.utexas.edu (or through this class’s Canvas 

site) 

 

Leave a comment on my blog, Musings on Using and Misusing 

Statistics, http://www.ma.utexas.edu/blogs/mks/ 


