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• Which column of the chart corresponds to the blue 

distribution? 

• Which column of the chart corresponds to the red 

distribution? 

• How does the picture reflect the compare and contrast above? 

• How does the picture relate to what we got in the sampling 

distribution demo? 
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The following chart summarizes which model assumptions are 

necessary to prove which part of the theorem: 

 Conclusions about Sampling Distribution 

(Distribution of 

! 

Y 
n ) 

 1: Normal 2: Mean ! 3: Standard 

deviation 

! 

"
n

  

Assumption 1 

(Y normal) 

 

! 

 

 

 

 

Assumption 2 

(simple random 

samples – i.e., 

independence) 

 

! 

  

! 

Note that: 

1. The conclusion that the sampling distribution 

! 

Y 
n  has the 

same mean as Y does not involve either of the model 

assumptions. 

2. The independence assumption is needed for both of the other 

two conclusions (that the sampling distribution is normal and 

that the sampling distribution has standard deviation 

! 

"
n

). 

Forming the confidence interval proceeds by the following steps: 
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1. First, we specify some high degree of probability; this called the 

confidence level. (We’ll use 0.95 to illustrate; so we’ll say “95% 

confidence level.”) 

2. The first two conclusions of the theorem (that the sampling 

distribution of 

! 

Y 
n  is normal with mean µ) imply that there is 

number a so that 

 (*)    The probability that 

! 

Y 
n  lies between µ - a and µ + a is 

0.95: 

P(µ - a < 

! 

Y 
n  <  µ + a) = 0.95   

 

[Draw a picture of the sampling distribution to help see why!] 

 

Caution: It’s important to get the reference category straight 

here. This amounts to keeping in mind what is a random 

variable and what is a constant:  

• Is µ a constant or a random variable? _______________ 

• Is a a constant or a random variable? ________________ 

• Is 

! 

Y 
n  a constant or a random variable? ________________ 

 

This tells us that the reference category in (*) is _____________ 

  

Note: In practice, we can’t find a exactly for this test, since we 

don’t know ".  

• But using the sample standard deviation s to approximate 

" will give an “approximate” test. 

• Many procedures are “exact” (that is, don’t require an 

approximation), but the additional complications they 

involve make this test better for explaining the basic idea.   
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3.  A little algebraic manipulation (which can be stated in words 

as, “If the estimate is within a units of the mean µ, then µ is 

within a units of the estimate”) allows us to restate (*) as 

(**)   The probability that µ lies between 

! 

Y 
n  - a and 

! 

Y 
n  + a  

  is approximately 0.95:  

  P(

! 

Y 
n  - a <  µ < 

! 

Y 
n  + a) # 0.95 

 

Caution: It’s again important to get the reference category correct 

here. It hasn't changed: it’s still the sample that is varying, not µ or 

a.  So the probability still refers to 

! 

Y 
n , not to µ. 

 

 Thinking that the probability in (**) refers to µ is a common 

mistake in interpreting confidence intervals. 

 

 It may help to restate (**) as: 

 

(***) The probability that the interval from  

 

! 

Y 
n  - a to 

! 

Y 
n  + a  contains µ is approximately 0.95. 

 

Note: The reference category is still the sample – the sample is 

varying, but µ is not varying.  However, as the sample varies, so 

does 

! 

Y 
n , and hence in this restatement, the interval is varying. This 

is helpful to remember. 
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• We are now faced with two possibilities (assuming the model 

assumptions are indeed all true): 

1) The sample we have taken is one of the approximately 

95% for which the interval from 

! 

Y 
n - a to 

! 

Y 
n+ a does 

contain µ. " 

 

2) Our sample is one of the approximately 5% for which the 

interval from 

! 

Y 
n  - a to 

! 

Y 
n  + a does not contain µ.  !  

 

• Unfortunately, we can't know which of these two possibilities 

is true for the sample we have.  !  

 

• So we are left with some uncertainty.  
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• Since this is the best we can do, we calculate the values of 

! 

Y 
n  - a 

and 

! 

Y 
n  + a for the sample we have, and call the resulting interval 

a  95% confidence interval for µ.  

o We can say that we have obtained the confidence interval 

by using a procedure that, for approximately 95% of all 

simple random samples from Y, of the given size n, 

produces an interval containing the parameter µ that we 

are estimating.  

o Unfortunately, we can't know whether or not the sample 

we have used is one of the approximately 95% of "good" 

samples that yield a confidence interval containing the true 

mean µ, or whether the sample we have is one of the 

approximately 5% of "bad" samples that yield a 

confidence interval that does not contain the true mean µ.  

o We can just say that we have used a procedure that 

"works" about 95% of the time.   

o In other words, “confidence” is in the degree of reliability 

of the method*, not of the result. 

o Various web demos can demonstrate. 

*“The method” here refers to the entire process: 

 Choose sample " 

   Record values of Y for sample " 

      Calculate confidence interval. 
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In general: We can follow a similar procedure for many other 

situations to obtain confidence intervals for parameters. 

• Each type of confidence interval procedure has its own model 

assumptions. 

o If the model assumptions are not true, we can’t be sure 

that the procedure does what is claimed.  

o However, some procedures are robust to some degree to 

some departures from models assumptions -- i.e., the 

procedure works pretty closely to what is intended if the 

model assumption is not too far from true. 

o Robustness depends on the particular procedure; there are 

no "one size fits all" rules. 
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• We can decide on the "level of confidence" we want;  

o E.g., we can choose 90%, 99%, etc. rather than 95%. 

o Just which level of confidence is appropriate depends on 

the circumstances. (More later) 

• The confidence level is the proportion (expressed as a 

percentage) of samples for which the procedure results in an 

interval containing the true parameter. (Or approximate 

proportion, if the procedure is not exact.) 

• However, a higher level of confidence will produce a wider 

confidence interval. (See demo) 

o i.e., less certainty in our estimate.  

o So there is a trade-off between level of confidence and 

degree of certainty. 
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• Sometimes the best we can do is a procedure that only gives 

approximate confidence intervals. 

o i.e., the sampling distribution can be described only 

approximately. 

o i.e., there is one more source of uncertainty. 

o This is the case for the large-sample z-procedure. 

 

• Note: If the sampling distribution is not symmetric, we can't 

expect the confidence interval to be symmetric around the 

estimate. 

o In this case, there might be more than one reasonable 

procedure for calculating the endpoints of the confidence 

interval. 

o This is typically the case for variances, odds ratios, and 

relative risks, which usually have sampling distributions 

that are skewed distributions (e.g., F or chi-squared). 

Picture: 

 

 

• There are variations such as "upper confidence limits" or 

"lower confidence limits" where we’re only interested in 

estimating how large or how small the estimate might be. 
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Confidence Interval Quiz: Each statement is an attempt to say 

what the statement  

“The interval from 0.5 to 1.2 is a 95% confidence interval for 

the mean µ of the random variable Y”  

means. Classify each statement as follows: 

• Doesn’t get it. 

• Gets it partly, but misses some details 

• Gets it! 

 

1. There’s a 95% probability that µ is in the interval from 0.5 to 

1.2. 

 

2. For 95% of simple random samples of size n from Y, µ will be 

in the interval from 0.5 to 1.2. 

 

3. The interval (0.5, 1.2) has been obtained by a process that, for 

95% all samples from Y, gives an interval containing µ. 

 

4.  The interval (0.5, 1.2) has been obtained by a process that, for 

95% all simple, random samples (of the same size as the data) 

from Y, gives an interval containing µ (provided the model 

assumptions are satisfied). 

 

The ones that don’t get it are common mistakes! 

 

 

 

 

 

 

 

 

 

 

 



 43 

V. MORE ON FREQUENTIST HYPOTHESIS TESTS 

 

We’ll now continue the discussion of hypothesis tests. 

 

Recall:  Most commonly used frequentist hypothesis tests involve 

the following elements: 

 

   1. Model assumptions  

   2. Null and alternative hypothesis 

   3. A test statistic (something calculated by a rule from a sample) 

with the following two properties: 

o Extreme values of the test statistic are rare, and hence cast 

doubt on the null hypothesis. 

o The sampling distribution of the test statistic is known. 

   4. A mathematical theorem saying, "If the model assumptions 

and the null hypothesis are both true, then the sampling 

distribution of the test statistic has this particular form." 

 

The exact details of these four elements will depend on the 

particular hypothesis test. 
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Illustration: One-sided t-test for a Sample Mean  

 

In this situation, the four elements above are: 

 

1. Model assumptions: 

• The random variable Y is normally distributed.  

• Samples are simple random samples. 

 

2. Null and alternate hypotheses: 

• Null hypothesis: The population mean ! of the random 

variable Y is !0. (i.e.,  ! =  !0) 

• Alternative hypothesis: The population mean ! of the random 

variable Y is greater than !0. (i.e., ! > !0)  

3. Test statistic: For a simple random sample y1, y2, ... , yn of size n, 

we define the t-statistic as 

          t = 

! 

y "µ
0

s
n

  , 

where 

 

! 

y  = (y1+ y2+ ... + yn)/n  (sample mean),  

and 

s =  

! 

1

n "1
(x " x

i
)
2

i=1

n

#  (sample standard deviation) 
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The sampling distribution for this test is then the distribution of the 

random variable Tn defined by random process and calculation, 

“Randomly choose a simple random sample of size n and 

calculate the t-statistic for that sample.”  

4. The mathematical theorem associated with this inference 

procedure (one-sided t-test for population mean) says: 

 If the model assumptions are true and the null hypothesis is 

true, then the sampling distribution of the t-statistic is the t-

distribution with n degrees of freedom.  

As illustrate below (with degrees of freedom 3 in red and 10 in 

green), for large values of n, the t-distribution looks very much like 

the standard normal distribution; but as n gets smaller, the peak 

gets slightly shorter and skinnier but the tails get slightly large and 

go further out.  

 

5.02.50.0-2.5-5.0

0.4

0.3

0.2

0.1

0.0

st norm

t3

t10

Variable
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The reasoning behind the hypothesis test uses the sampling 

distribution and the value of the test statistic for the sample that 

has actually been collected (the actual data). 

1. First, calculate the t-statistic for the data 

2. Then consider where the t-statistic for the data at hand lies 

on the sampling distribution.  Two possible values are shown 

in red and green, respectively, in the diagram below. 

o  The distribution shown is the sampling distribution of the 

t-statistic. 

o Remember that the validity of this picture depends on the 

validity of the model assumptions and on the assumption 

that the null hypothesis is true. 

 

Case 1: If the t-statistic lies at the red bar (around 0.5) in the 

picture, nothing is unusual; our data are consistent with the null 

hypothesis.  
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Case 2: If the t-statistic lies at the green bar (around 2.5), then the 

data would be fairly unusual -- assuming the null hypothesis is 

true.  

 

So a t-statistic at the green bar would cast some reasonable doubt 

on the null hypothesis.  

 

A t-statistic even further to the right would cast even more doubt 

on the null hypothesis.
 

 

Note: A little algebra will show that if t = 

! 

y "µ
0

s
n

 is unusually 

large, then so is 

! 

y , and vice-versa 
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p-Values 

 

The rough idea: The p-value is a measure of evidence against the 

null hypothesis. (“What we want”) 

 

Recall from yesterday:  

• Choice of measure is often difficult; it may involve 

compromises. 

• Carefully read the definitions of measures.  

o They may not be what you might think 

 

Misunderstandings of p-values are common! 
 

The idea a little less rough (The rough idea of “What we get”): 

The p-value is a quantitative measure of how unusual a particular 

sample would be if the null hypothesis were true (with lower p-

values indicating a more unusual sample).  

 

The general (more precise) definition: (“What we get”) 

 

p-value = the probability of obtaining a test statistic at least as 

extreme as the one from the data at hand, assuming the model 

assumptions and the null hypothesis are all true.   

So we are measuring how unusual the sample is by how 

extreme the test statistic is – in other words, the test statistic is 

used as a measure of unusualness of the sample. 
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Elaboration: The interpretation of "at least as extreme as" depends 

on the alternative hypothesis.   

• For the one-sided alternative hypothesis ! > !0  (as in our 

example), "at least as extreme as" means "at least as great as".  

o Recalling that the probability of a random variable lying in 

a certain region is the area under the probability 

distribution curve over that region, we conclude that for 

this alternative hypothesis, the p-value is the area under 

the sampling distribution curve to the right of the test 

statistic calculated from the data.  

o Note that, in the picture, the p-value for the t-statistic at the 

green bar is much less than that for the t-statistic at the red 

bar. 

• Similarly, for the other one-sided alternative, ! < !0 , the p-

value is the area under the sampling distribution curve to the 

left of the calculated test statistic.  

o Note that for this alternative hypothesis, the p-value for the 

t-statistic at the green bar would be much greater than the 

t-statistic at the red bar, but both would be large as p-

values go. 

• For the two-sided alternative ! # !0, the p-value would be the 

area under the curve to the right of the absolute value of the 

calculated t-statistic, plus the area under the curve to the left 

of the negative of the absolute value of the calculated t-

statistic.  

o Since the sampling distribution in the illustration is 

symmetric about zero, the two-sided p-value of, say the 

green value, would be twice the area under the curve to the 

right of the green bar.   
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Recall that in the sampling distribution, we’re only considering 

samples  

• from the same random variable,  

• that fit the model assumptions and 

• of the same size as the one we have.  

 

So if we spell everything out, the definition of p-value reads: 

p-value = the probability of obtaining a test statistic at least as 

extreme as the one from the data at hand, assuming  

i. the model assumptions are all true, and 

ii. the null hypothesis is true, and 

iii. the random variable is the same (including the same 

population), and 

iv. the sample size is the same. 
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We can summarize the preceding discussion as:  

 

 If we obtain an unusually small p-value, then (at least) one of the 

following must be true: 

I. At least one of the model assumptions is not true (in which 

case the test may be inappropriate). 

II. The null hypothesis is false. 

III. The sample we’ve obtained happens to be one of the small 

percentage (of suitable samples from the same population and 

of the same size as ours) that result in an unusually small p-

value. 

Thus, if the p-value is small enough and all the model assumptions 

are met, then rejecting the null hypothesis in favor of the alternate 

hypothesis can be considered a rational decision, based on the 

evidence of the data used. 

 

However:  

1. How small is "small enough" is a judgment call. 

2. "Rejecting the null hypothesis" does not mean the null 

hypothesis is false or that the alternate hypothesis is true. (Why?) 
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VI. MISINTERPRETATIONS AND MISUSES OF P-

VALUES 
 

Recall:  

p-value = the probability of obtaining a test statistic at least as 

extreme as the one from the data at hand, assuming:  

i. the model assumptions for the inference procedure used 

are all true, and  

ii. the null hypothesis is true, and  

iii. the random variable is the same (including the same 

population), and  

iv. the sample size is the same. 

Note that this is a conditional probability: The probability that 

something happens, given that various other conditions hold. One 

common mistake is to neglect some or all of the conditions. 
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Example A: Researcher 1 conducts a clinical trial to test a drug for 

a certain medical condition on 30 patients all having that condition.  

• The patients are randomly assigned to either the drug or a 

look-alike placebo (15 each).  

• Neither the patients nor the medical personnel involved know 

which patient takes which drug.  

• Treatment is exactly the same for both groups, except for 

whether the drug or placebo is used.  

• The hypothesis test has null hypothesis "proportion 

improving on the drug is the same as proportion improving 

on the placebo" and alternate hypothesis "proportion 

improving on the drug is greater than proportion improving 

on the placebo."  

• The resulting p-value is p = 0.15.  

 Researcher 2 does another clinical trial on the same drug, 

with the same placebo, and everything else the same except that 

200 patients are randomized to the treatments, with 100 in each 

group. The same hypothesis test is conducted with the new data, 

and the resulting p-value is p = 0.03.  

    Are these results contradictory? No -- since the sample sizes are 

different, the p-values are not comparable, even though everything 

else is the same.  

Indeed, a larger sample size typically results in a smaller p-value. 

The idea of why this is true is illustrated by the case of the z-

test, since large n gives a smaller standard deviation of the 

sampling distribution, hence a narrower sampling 

distribution.  

Comparing p-values for samples of different size is a common 

mistake. 
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Example B: Researcher 2 from Example A does everything as 

described above, but for convenience, his patients are all from the 

student health center of the prestigious university where he works. 

• He cannot claim that his result applies to patients other than 

those of the age and socio-economic background, etc. of the 

ones he used in the study, because his sample was taken from 

a smaller population. 

Example C: Researcher 2 proceeds as in Example A, with a sample 

carefully selected from the population to which he wishes to apply 

his results, but he is testing for equality of the means of an outcome 

variable for the two groups. 

• The hypothesis test he uses requires that the variance of the 

outcome variable for each group compared is the same.  

• He doesn’t check this, and in fact the variance for the 

treatment group is twenty times as large as the variance for 

the placebo group.  

• He’s not justified in rejecting the null hypothesis of equal 

means, no matter how small his p-value (unless by some 

miracle the statistical test used is robust to such large 

departures from the model assumption of equality of 

variances.) 
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Another common misunderstanding of p-values is the belief that 

the p-value is "the probability that the null hypothesis is true".  

• This is essentially a case of confusing a conditional probability 

with the reverse conditional probability: In the definition of p-

value, “the null hypothesis is true” is the condition, not the 

event.  

• The basic assumption of frequentist hypothesis testing is that the 

null hypothesis is either true (in which case the probability that 

it is true is 1) or false (in which case the probability that it is true 

is 0). So unless p = 0 or 1, the p-value couldn’t possibly be the 

probability that the null hypothesis is true. 

 

Note:  In the Bayesian perspective, it makes sense to consider "the 

probability that the null hypothesis is true" as having values other 

than 0 or 1.  

• In that perspective, we consider "states of nature;" in different 

states of nature, the null hypothesis may have different 

probabilities of being true.  

• The goal is then to determine the probability that the null 

hypothesis is true, given the data: P(H0 true | data)  

• This is essentially the reverse conditional probability from the 

one considered in frequentist inference (the probability of the 

data given that the null hypothesis is true – P( data | H0 true). 
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p-value quiz: 

 

You’ve done a two-sided t-test for a mean. The null hypothesis is 
H0: ! = 3; the alternate hypothesis is Ha: ! " 3. You’ve obtained 
the p-value p = .06. Classify each statement below as: 

• Doesn’t get it. 

• Gets it partly, but misses some details 

• Gets it! 
 
1. The probability that ! = 3 is 0.06. 
 
 
 
2. The probability that ! " 3 is 0.06. 
 
 
 
3. The probability of getting the t-statistic you got from the data 

(assuming we’re considering just simple random samples of the 
same size and assuming H0 and all model assumptions are true) 
is 0.06. 

 
 
 
4. The probability of getting a t-statistic at least as large as the one 

we got from the data is 0.06, assuming we’re considering just 
simple random samples of the same size and assuming H0 and 
all model assumptions are true. 

 
(Continued next page) 
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5. The probability of getting a t-statistic with absolute value at 
least as large as the one we got from the data is 0.06, assuming 
we’re considering just simple random samples of the same size 
and assuming H0 and all model assumptions are true. 
 
 
 
 

5. If H0 is true, then the probability of getting a value of t (from a 
simple random sample taken from the population in question) 
with absolute value at least as large as the one we obtained is 
.06. 
 
 
 
 

6. If H0 is true, then the probability of getting a value of t (from a 
simple random sample of the same size as the one we used, and 
taken from the population in question) with absolute value at 
least as large as the one we obtained is .06 

 
 
 
 

7. If H0 and all the model assumptions are true, then the probability 
of getting a value of t (from a simple random sample of the 
same size as the one we used, and taken from the population in 
question) with absolute value at least as large as the one we 
obtained is .06 

 
 
 
 
More misuses (abuses?) of p-values on Days 3 and 4. 
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VII: TYPE I ERROR AND SIGNIFICANCE LEVEL 

 

Type I Error: 

Recall: Rejecting the null hypothesis doesn’t necessarily mean the 

null hypothesis is false – because of inherent uncertainty in 

statistical inference, we might falsely reject the null hypothesis. 

This is called a Type I error: 

Type I Error: Rejecting the null hypothesis when it is in fact true. 

 

Significance level: 

Before doing a hypothesis test, many people decide on a maximum 

p-value for which they will reject the null hypothesis. This value is 

often denoted $ (alpha) and is also called the significance level.   

When a hypothesis test results in a p-value that is less than the 

significance level, the result of the hypothesis test is called 

statistically significant, or significant at the ! level.  
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Confusing statistical significance and practical significance is a 

common mistake.  

Example: A large clinical trial is carried out to compare a new 

medical treatment with a standard one. The statistical analysis 

shows a statistically significant difference in lifespan when 

using the new treatment compared to the old one.  

• However, the increase in lifespan is at most three days, 

with average increase less than 24 hours, and with poor 

quality of life during the period of extended life.  

• Most people would not consider the improvement 

practically significant. 

 

Caution: The larger the sample size, the more likely a 

hypothesis test will detect a small difference. Thus it’s 

especially important to consider practical significance when 

sample size is large. 
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Connection between Type I error and significance level:     

A significance level $ corresponds to a certain value of the test 

statistic, say t$, represented by the orange line in the picture of a 

sampling distribution below (the picture illustrates a hypothesis 

test with alternate hypothesis "! > 0"), with area under the curve to 

the right of t$ equal to $.  

 

• Since the shaded area indicated by the arrow is the p-value 

corresponding to t$, that p-value (shaded area) is $.  

• To have p-value less than $, a t-value for this test must be to 

the right of t$.  

• So the probability of rejecting the null hypothesis when it’s 

true is the probability that t > t$ , which we have seen is $.  

• In other words, the probability of Type I error is ". 

• Rephrasing using the definition of Type I error:  

The significance level " is the probability of making the 

wrong decision when the null hypothesis is true. 
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Note:  

• $ is also called the bound on Type I error.  

• Choosing a significance level $ is sometimes called setting a 

bound on Type I error. 

 

Common mistake: Claiming that an alternate hypothesis has been 

“proved” because it has been rejected in a hypothesis test.  

 

• This is one instance of the mistake of “expecting too much 

certainty” discussed Monday. 
 

• There’s always a possibility of a Type I error; the sample in 

the study might have been one of the small percentage of 

samples giving an unusually extreme test statistic. 

 

• This is why replicating studies (i.e., repeating the study 

with another sample) is important. The more (carefully 

done) studies that give the same result, the stronger the 

overall evidence. 

 

• There’s also the possibility that the sample is biased or the 

method of analysis was inappropriate; either of these could 

also produce a misleading result. 
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VIII: PROS AND CONS OF SETTING A 

SIGNIFICANCE LEVEL 

• Pro: Setting a significance level (before doing inference) has 

the advantage that the analyst isn’t tempted to chose a cut-off 

(after obtaining the p-value) on the basis of what he or she 

hopes is true.  

• Con: It has the disadvantage that it neglects that some p-

values might best be considered borderline.  

o This is one reason why it’s important to report p-values 

when reporting results of hypothesis tests. 

o  It’s also good practice to include confidence 

intervals corresponding to the hypothesis test.  

# For example, if a hypothesis test for the difference of 

two means is performed, also give a confidence interval 

for the difference of those means.  

# If the significance level for the hypothesis test is .05, 

then use confidence level 95% for the confidence 

interval. 

 

 

 

 


