
APPENDIX FOR DAY 4 
 
 
Suggestions for data snooping professionally and ethically (p. 5) 

 Be sure to see the Suggestions for Researchers posted at the course website for 
additional information and references. 

1. Educate yourself on the limitations of statistical inference: Model assumptions, the 
problems of Types I and II errors, power, and multiple inference, including the "hidden 
comparisons" that may be involved in data snooping (as in the example on p. 18 of the 
notes). 
 
 2. Plan your study to take into account the problems involving model assumptions, 
Types I and II errors, power, and multiple inference. Some specifics to consider:  

a. If you will be gathering data, decide before gathering the data: 
• The questions you are trying to answer. 
• How you will gather the data and the inference procedures you intend to use 

to help answer your questions.  
o These need to be planned together, to maximize the chances that the 

data will fit the model assumptions of the inference procedures.  
• Whether or not you will engage in data snooping. 
• The overall Type I error rate (or false discovery rate) and power that would be 

appropriate (considering the consequences of these types of errors in the 
situation you are studying).  
o Be sure to allow some portion of the overall Type I error rate for any data 

snooping you think you might do. 
Then do a power analysis to see what sample size is needed to meet these criteria. 

• Take into account any relevant considerations such as intent-to-treat analysis 
(see below), or how you will deal with missing data.   

•  If the sample size needed is too large for your resources, you will need to 
either obtain additional resources or scale back the aims of your study.  

 
 b. If you plan to use existing data, you will need to go through a process similar to 
that in (a) before looking at the data:  

• Decide on the questions you are trying to answer. 
• Find out how the data were gathered.  
• Decide on inference procedures that i) will address your questions of interest 

and ii) have model assumptions compatible with how the data were collected.  
o If this turns out to be impossible, the data are not suitable. 

• Decide whether or not you will engage in data snooping. 
• Decide what overall Type I error rate (or false discovery rate) and power 

would be appropriate (considering the consequences of these types of errors 
in the situation you are studying).  



o Be sure to allow some portion of the overall Type I error rate for any data 
snooping you think you might do. 

Then do a power analysis to see what sample size is needed to meet these criteria.  

• Take into account any relevant considerations such as intent-to-treat analysis 
or how you will handle missing data. 

•  If the sample size needed is larger than the available data set, you will need 
to either scale back the aims of your study, or find or create another larger 
data set. 

c. If data snooping is intended to be the purpose or an important part of your 
study, then before you look at the data, divide it randomly into two parts: One to 
be for used for discovery purposes (generating hypotheses), the other to be used 
for confirmatory purposes (testing hypotheses). 

• Be careful to do the randomization in a manner that preserves the structure 
of the data.  

o For example, if you have students nested in schools nested in school 
districts, you need to preserve the nesting  

o Depending on the aims of the study and the size of the sample, this 
might be done by random assigning students within each school to the 
discovery or confirmatory set, or by randomly assigning school 
districts (plus all their students in the data set) to the discovery or 
confirmatory set.    

• Using a type I error rate or false discovery rate may not be obligatory in 
the discovery phase, but may be practical to help you keep the number of 
hypotheses you generate down to a level that you will be able to test (with 
a reasonable bound on Type I error rate or false discovery rate, and a 
reasonable power) in the confirmatory phase 

• A preliminary consideration of Type I errors and power should be done to 
help you make sure that your confirmatory data set is large enough.  

o Be sure to then give further thought to consequences of Type I and II 
errors for the hypotheses you generate with the discovery data set, and 
set an overall Type I error rate (or false discovery rate) for the 
confirmatory stage.   

3. Before doing any research, register your research plan, to help keep yourself honest as 
well as to insure transparency in reporting your research. 
 
4. Keep notes on any decisions you made while collecting or analyzing data. 
 
5. Report your results carefully, aiming for honesty and transparency 



• State clearly the questions you set out to study. 
• State your methods, and your reasons for choosing those methods. For 

example: 
o  Why you chose the inference procedures you used; 
o  Why you chose the Type I error rate and power that you used. 

• Give details of how your data were collected. 
• State clearly what (if anything) was data snooping, and how you accounted 

for it in overall Type I error rate or False Discovery Rate. 
• Include a "limitations" section, pointing out any limitations and uncertainties 

in the analysis. Examples: 
o If power was not large enough to detect a practically significant 

difference; 
o Any uncertainty in whether model assumptions were satisfied; 
o If there was possible confounding;  
o If missing data created additional uncertainty, etc. 

• Be careful not to inflate or over-interpret conclusions, either in the abstract or 
in the results or conclusions sections. 

V. METHODS FOR CHECKING MODEL ASSUMPTIONS (pp. 16, 18, 19, 21) 

Examples of Checking Model Assumptions Using Well-established Facts or Theorems 
(p. 18) 
 
Recall:  

• This is not possible very often. 

• Here, "well established" means well established by empirical evidence and/or 
sound mathematical reasoning.  

• This is not the same as "well accepted," since sometimes things may be well 
accepted without sound evidence or reasoning. 

1. Using laws of physics 
 
Hooke's Law says that when a weight that is not too large (below what is called the 
"elastic limit") is placed on the end of a spring, the length of the (stretched) spring is 
approximately a linear function of the weight.  

• This tells us that if we do an experiment with a spring by putting various weights 
(below the elastic limit) on it and measuring the length of the spring, we are 
justified in using a linear model, 
 
    Length = A×Weight + B 

 



2. Using the Central Limit Theorem (p. 16) 

One form of The Central Limit Theorem says that for most distributions, a linear 
combination (e.g., the sum or the mean) of a large enough number of independent 
random variables is approximately normal.  

• Thus, if a random variable in question is the sum of independent random 
variables, then it’s usually safe to assume that the variable is approximately 
normal.  

• For example, adult human heights (at least if we restrict to one sex) are the sum of 
many heights: the heights of the ankles, lower legs, upper legs, pelvis, many 
vertebrae, and head.  

o Empirical evidence suggests that these heights vary roughly independently 
(e.g., the ratio of height of lower leg to that of upper leg varies 
considerably).  

o Thus it’s plausible by the Central Limit Theorem that human heights are 
approximately normal.  

o This in fact is supported by empirical evidence. 

• Caution: “Most” is not “all.” There are some distributions for which the central 
limit theorem is not valid. One notable exception is distributions that are “heavy-
tailed” (also called leptokurtic). Such distributions occur in certain situations, 
such as seed dispersal in biology. 

o Try it on the Sampling Distribution demo. 

• The Central Limit Theorem can also be used to reason that some distributions are 
approximately lognormal -- that is, that the logarithm of the random variable is 
normal.  

o For example, the distribution of a pollutant might be determined by 
successive independent dilutions of an original emission.  

o This translates into mathematical terminology by saying that the amount 
of pollution (call this random variable Y) in a given small region is the 
product of independent random variables.  

o Thus logY is the sum of independent random variables.  

o If the number of successive dilutions is large enough, the reasoning above 
shows that logY is approximately normal, and hence that Y is 
approximately lognormal. 



Using Plots to Check Model Assumptions  
 
Overall Cautions:  

1. Unfortunately, these methods are typically better at telling you when the model 
assumption does not fit than when it does. 
 
2. There’s inherently an element of subjectivity in using model-checking plots.  

o Some people are more likely than others to “see things that aren’t really 
there.”  

o Buja et al (2009) have recently proposed some protocols for taking this into 
account.  

o The smaller the sample size, the more of a problem this will be. 

3. Different techniques have different model assumptions, so will need different 
model checking plots. 

o Be sure to consult a good reference for the particular technique you are 
considering using.  

General Rule of Thumb:  

1. First check any independence assumptions;  

2. then any equal variance assumption;  

3. then any assumption on distribution (e.g., normal) of variables. 

Rationale: Techniques are usually least robust to departures from independence, and 
most robust to departures from normality.  

• See van Belle (2008), pp. 173 - 177 and the references given there for more 
detail. 

 
Suggestions and Guidelines for Checking Independence Assumptions  

Independence assumptions are usually formulated in terms of error terms rather than in 
terms of the outcome variables.  

• For example, in simple linear regression, the model equation is  
Y = α + βx + ε,     

      where Y is the outcome (response) variable and ε  denotes the error term 
(also a random variable).  
• It’s the error terms that are assumed to be independent, not the values of the 

response variable.  
• In more detail: The model assumptions are 



o E(Y|x) = α + βx 
o For each x, ε is normal with mean 0 and standard deviation σ. 
o The values of ε for different x’s are independent.  

 
We do not know the values of the error terms ε, so we can only plot the residuals ei 
(defined as the observed value yi minus the fitted value, according to the model), which 
approximate the error terms.  
 
Rule of Thumb: To check independence, plot residuals against:  

• Any time variables present (e.g., order of observation)  

• Any spatial variables present, 

• Any variables used in the technique (e.g., factors, regressors)  

A pattern that’s not random suggests lack of independence. 

Rationale: Dependence on time or on spatial variables is a common source of lack of 
independence, but the other plots might also detect lack of independence. 

 
Comments:  
 
1. Since time or spatial correlations are so frequent, it is important when making 
observations to record any time or spatial variables that could conceivably influence 
results.  
 

• This not only allows you to make the residual plots to detect possible lack of 
independence, but also allows you to change to a technique incorporating 
additional time or spatial variables if lack of independence is detected in these 
plots. 

 
2. Since it’s known that the residuals sum to zero (in least squares regression), they’re not 
independent, so the plot is really a very rough approximation.  
 
3. Some models only require that errors are uncorrelated, not independent; model checks 
are the same as for independence. 
 

Suggestions for Checking Model Assumptions of Equal Variance or 
Normality  

Caution: These suggestions are things you should do, but they are not guaranteed to find 
all departures from equal variance or normality. 

Checking for Equal Variance  



• Plot residuals against fitted values (in most cases, these are the estimated 
conditional means, according to the model), since it is not uncommon for 
conditional variances to depend on conditional means, especially to increase 
as conditional means increase. 

o This would show up as a funnel or megaphone shape to the residual plot. 

• Especially with complex models, plotting against factors or regressors might 
also pick up unequal variance. 

• Caution: Hypothesis tests for equality of variance are often not reliable, since 
they also have model assumptions and are typically not robust to departures 
from those assumptions. 

Checking for Normality or Other Distribution 

Caution: A histogram (whether of outcome values or of residuals) is not a good way to 
check for normality, since histograms of the same data but using different bin sizes 
(class-widths) and/or different cut-points between the bins may look quite different.  
 
Instead, use a probability plot (also know as a quantile plot or Q-Q plot).  

• Most statistical software has a function for producing these. 
• Caution: Probability plots for small data sets are often misleading; it is very hard 

to tell whether or not a small data set comes from a particular distribution. 
 

Checking for Linearity  

When considering a simple linear regression model, it’s important to check the linearity 
assumption -- i.e., that the conditional means of the response variable are a linear 
function of the predictor variable.  

Graphing the response variable vs. the predictor can often give a good idea of whether or 
not this is true.  

However, one or both of the following refinements may be needed: 

1. Plot residuals (instead of response) vs. predictor.  
• A non-random pattern suggests that a simple linear model is not appropriate; 

you may need to transform the response or predictor, or add a quadratic or 
higher term to the mode. 

 
2. Use a scatterplot smoother such as lowess (also known as loess) to give a visual 
estimation of the conditional mean.  

• Such smoothers are available in many regression software packages.  
• Caution:  You may need to choose a value of a smoothness parameter. 

Making it too large will over smooth; making it too small will not smooth 
enough. 



   
When considering a linear regression with just two terms, plotting response (or residuals) 
against the two terms (making a three-dimensional graph) can help gauge suitability of a 
linear model, especially if your software allows you to rotate the graph. 
 
**Caution: It’s not possible to gauge from scatterplots whether a linear model in more 
than two predictors is suitable.  

• One way to address this problem is to try to transform the predictors to 
approximate multivariate normality.  

o See, e.g., Cook and Weisberg (1999), pp. 324 – 329. 
• Multivariate normality will ensure not only that a linear model is appropriate for 

all (transformed) predictors together, but also that a linear model is appropriate 
even when some transformed predictors are dropped from the model. 

  
Note: It’s a common mistake to assume that if a linear model fits with all predictors 
included, then a linear model will still fit when some predictors are dropped. (p. 46) 
 
Example: If the model with two predictors X1 and X2, and response variable Y, has 
conditional linear mean function 
  E(Y|X1, X2) = 1 + 2X1 +3X2  
 
but also X1 and  X2 are related by 
 
   E( X1| X2) = log(X1), 
 
then it can be calculated that  
 
  E(Y|X1) = 1 +2X1 + 3log(X1), 

 
which says that a linear model does not fit when Y is regressed on X1 alone. 
 
 
Additional Comments about Fixed and Random Factors in ANOVA  (p. 29) 

• The standard methods for analyzing random effects ANOVA models assume that 
the random factor has infinitely many levels, but usually still work well if the total 
number of levels of the random factor is at least 100 times the number of levels 
observed in the data.  

o Situations where the total number of levels of the random factor is less 
than 100 times the number of levels observed in the data require special 
"finite population" methods. 

• An interaction term involving both a fixed and a random factor should be 
considered a random factor. 

• A factor that is nested in a random factor should be considered random. 



• Sometimes (especially in mixed models) ANOVA software will give an 
“estimates” of a random effect for particular levels, but these should be 
considered “predictions” rather than estimates,_.   

Suggestions for Dealing with Pseudoreplication (p. 39) 
 
1. Avoid it if at all possible.  

Key in doing this is to  

• Carefully determine what the experimental/observational units are;  
• Then be sure that each treatment is randomly applied to more than one 

experimental/observational unit.  

For example, in comparing curricula (Example 3 above), if ten schools participated in the 
experiment and five were randomly assigned to each treatment (i.e., curriculum), then 
each treatment would have five replications; this would give some information about the 
variability of the effect of the different curricula.  
 
2.  If it is not possible to avoid pseudoreplication, then:  

a. Do whatever is possible to minimize lack of independence in the pseudo-replicates.  
• For example, in the study of effect of CO2 on plant growth, the researcher 

rearranged the plants in each growth chamber each day to mitigate effects of 
location in the chamber.  

 
b. Be careful in analyzing and reporting results.  

• Be open about the limitations of the study.  
• Be careful not to over-interpret results.  
• For example, in Example 2, the researcher could calculate what might be called 

"pseudo-confidence intervals" that would not be "true" confidence intervals, but 
which could be interpreted as giving a lower bound on the margin of error in the 
estimate of the quantity being estimated.  

 
c. Consider the study as preliminary (for example, for giving insight into how to plan a 
better study), or as one study that needs to be combined with many others to give more 
informative results.  
 
 
Trying to avoid over-fitting (p. 45) 
 
As with most things in statistics, there are no hard and fast rules that guarantee success.  

• However, here some guidelines.  



• They apply to many other types of statistical models (e.g., multilinear, mixed 
models, general linear models, hierarchical models) as well as least squares 
regression. 

1. Validate your model (for the mean function, or whatever else you are modeling) if at 
all possible. Good and Hardin (2006, p. 188) list three general types of validation 
methods: 

i. Independent validation (e.g., wait till the future and see if predictions are accurate) 
• This of course is not always possible. 

 
ii. Split the sample.  

• Use one part for model building, the other for validation. 
• See item II(c) of Data Snooping for more discussion. 

 
iii. Resampling methods. 
 

• See Chapter 13 of Good and Hardin (2006), and the further references 
provided there, for more information. 

 
2. Gather plenty of (ideally, well-sampled) data.  

• If you are gathering data (especially through an experiment), be sure to 
consult the literature on optimal design to plan the data collection to get the 
tightest possible estimates from the least amount of data. 

• For regression, the values of the explanatory variable (x values, in the above 
example) do not usually need to be randomly sampled; choosing them 
carefully can minimize variances and thus give tighter estimates.  

• Unfortunately, there is not much known about sample sizes needed for good 
modeling.  

o Ryan (2009, p. 20) quotes Draper and Smith (1998) as suggesting that 
the number of observations should be at least ten times the number of 
terms; this may be overly optimistic. 

o Good and Hardin (2006, p. 183) offer the following conjecturally: 

"If m points are required to determine a univariate regression line with 
sufficient precision, then it will take at least mn observations and perhaps 
n!mn observations to appropriately characterize and evaluate a regression 
model with n variables." 

 
3. Pay particular attention to transparency and avoiding over-interpretation in reporting 
your results.  



• For example, be sure to state carefully what assumptions you made, what 
decisions you made, your basis for making these decisions, and what validation 
procedures you used.  

• Provide (in supplementary online material if necessary) enough detail so that 
another researcher could replicate your methods. 
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