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I. MORE PRECISE DEFINITION OF  

SIMPLE RANDOM SAMPLE 
 

In practice in applying statistical techniques, we’re interested in 

random variables defined on the population under study.  

Recall the examples mentioned yesterday: 

1. In a medical study, the population might be all adults over 

age 50 who have high blood pressure.  

2. In another study, the population might be all hospitals in the 

U.S. that perform heart bypass surgery.  

3. If we’re studying whether a certain die is fair or weighted, 

the population is all possible tosses of the die.  

In these examples, we might be interested in the following random 

variables: 

Example 1: The difference in blood pressure with and without 

taking a certain drug.  

Example 2: The number of heart bypass surgeries performed in 

a particular year, or the number of such surgeries that are 

successful, or the number in which the patient has 

complications of surgery, etc. 

Example 3: The number that comes up on the die. 
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Connection with Independent Random Variables: 

 

If we take a sample of units from the population, we have a 

corresponding sample of values of the random variable.  

 

In Example 1:  

• The random variable is “difference in blood pressure with 

and without taking the drug.” 

o Call this random variable Y (upper case Y) 

• The sample of units from the population is a sample of adults 

over age 50 who have high blood pressure. 

o Call them person 1, person 2, etc. 

• The corresponding sample of values of the random variable 

will consist of values we will call y1, y2, ..., yn (lower case 

y’s),  where  

o n = number of people in the sample  

o y1 = the difference in blood pressures (that is, the value 

of Y) for the first person in the sample, 

o y2 = the difference in blood pressures (that is, the value 

of Y) for the second person in the sample 

o etc. 
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We can look at this another way, in terms of n random variables 

Y1, Y2, ..., Yn , described as follows: 

• The random process for Y1 is “pick the first person in the 

sample”; the value of Y1 is the value of Y for that person – 

i.e., y1. 

• The random process for Y2 is “pick the second person in the 

sample”; the value of Y2 is the value of Y for that person – 

i.e., y2. 

• etc. 

 

The difference between using the small y's and the large Y's is that 

when we use the small y's we are thinking of a fixed sample of size 

n from the population, but when we use the large Y's, we are 

thinking of letting the sample vary (but always with size n). 

Note: The Yi’s are sometimes called identically distributed, 

because they have the same probability distribution (in this 

example, the distribution of Y). 
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Precise definition of simple random sample of a random 

variable:  

"The sample y1, y2, ... , yn is a simple random sample" means 

that the associated random variables Y1, Y2, ... , Yn are 

independent.   

Intuitively speaking, "independent" means that the values of any 

subset of the random variables Y1, Y2, ... , Yn do not influence the 

probabilities of the values of the other random variables in the list.   

 

Recall: We defined a random sample as one that is chosen by a 

random process. 

• Where is the random process in the precise definition? 

 

Note: To emphasize that the Yi’s all have the same distribution, the 

precise definition is sometimes stated as, “Y1, Y2, ... , Yn are 

independent, identically distributed,” sometimes abbreviated as 

iid.   
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Connection with the initial definition of simple random sample 

 

Recall the preliminary definition (from Moore and McCabe, 

Introduction to the Practice of Statistics) given in Simple Random 

Samples, Part 1: 

 

"A simple random sample (SRS) of size n consists of n 

individuals from the population chosen in such a way that 

every set of n individuals has an equal chance to be the 

sample actually selected." 

 

Recall Example 3 above: We toss a die; the number that comes up 

on the die is the value of our random variable Y.  

• In terms of the preliminary definition:  

o The population is all possible tosses of the die. 

o  A simple random sample is n different tosses.  

• The different tosses of the die are independent events (i.e., 

what happens in some tosses has no influence on the other 

tosses), which means that in the precise definition above, the 

random variables Y1, Y2, ... , Yn are indeed independent: The 

numbers that come up in some tosses in no way influence the 

numbers that come up in other tosses. 
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Compare this with example 2: The population is all hospitals in the 

U.S. that perform heart bypass surgery.  

• Using the preliminary definition of simple random sample of 

size n, we end up with n distinct hospitals.  

• This means that when we have chosen the first hospital in our 

simple random sample, we cannot choose it again to be in 

our simple random sample.  

• Thus the events "Choose the first hospital in the sample; 

choose the second hospital in the sample; ... ," are not 

independent events: The choice of first hospital restricts the 

choice of the second and subsequent hospitals in the sample. 

• If we now consider the random variable Y = the number of 

heart bypass surgeries performed in 2008, then it follows that 

the random variables Y1, Y2, ... , Yn are not independent.   

The Bottom Line: In many cases, the preliminary definition does 

not coincide with the more precise definition.  

More specifically, the preliminary definition allows sampling 

without replacement, whereas the more precise definition 

requires sampling with replacement. 
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The Bad News: The precise definition is the one used in the 

mathematical theorems that justify many of the procedures of 

statistical inference. (More detail later.) 

 

The Good News:  

1. If the population is large enough, the preliminary definition 

is close enough for all practical purposes. 

2. In many cases where the population is not “large enough,” 

there are alternate theorems giving rise to alternate 

procedures using a “finite population correction factor” that 

will work.  

• Unfortunately, the question, "How large is large enough?" 

does not have a simple answer. 

• However, the answer is relative to sample size –we only 

need to worry for samples that are large relative to sample 

size 

3. In many cases, even if the population is not large enough, 

there are alternate procedures (known as permutation or 

randomization or resampling tests) that are applicable. 

Consequent Problems with Small Populations: 

 

1) Using a “large population” procedure with a “small 

population” is a common mistake.  

 

2) One more difficulty in selecting an appropriate sample, 

which leads to one more source of uncertainty. 
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II. WHY RANDOM SAMPLING IS IMPORTANT 

Recall the Myth:  

"A random sample will be representative of the population". 

 

A slightly better explanation (partly true but partly Urban 

Legend):  

"Random sampling prevents bias by giving all individuals an 

equal chance to be chosen." 

• The element of truth: Random sampling does eliminate 

systematic bias.  

• A practical rationale: This explanation is often the best 

plausible explanation that is acceptable to someone with 

little mathematical background.  

• However, this statement could easily be misinterpreted as 

the myth above.  

An additional, very important, reason why random sampling is 

important, at least in frequentist statistical procedures, which are 

those most often taught (especially in introductory classes) and 

used: 

The Real Reason: The mathematical theorems that justify most 

parametric frequentist statistical procedures apply only to truly 

(suitably) random samples.  

 

The next section elaborates. 
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III. OVERVIEW OF 

FREQUENTIST HYPOTHESIS TESTING 
 

Basic Elements of Most Frequentist Hypothesis Tests: 

Most commonly-used (“parametric”), frequentist hypothesis tests 

involve the following four elements: 

 

i. Model assumptions 

 

ii. Null and alternative hypotheses 

 

iii. A test statistic 

 

This is something that  

a. Is calculated by a rule from a sample.  

b. Has the property that, if the null hypothesis is true, 

extreme values of the test statistic are rare, and hence 

cast doubt on the null hypothesis. 

iv. A mathematical theorem saying,  

"If the model assumptions and the null hypothesis are both 

true, then the sampling distribution of the test statistic has a 

certain particular form."  
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Note: 

• The sampling distribution is the probability distribution of 

the test statistic, when considering all possible suitably 

random samples of the same size. (More later.) 

• The exact details of these four elements will depend on the 

particular hypothesis test. 

• In particular, the form of the sampling distribution will 

depend on the hypothesis test. 
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Illustration: Large Sample z-Test for the mean, with two-sided 

alternative 

The above elements for this test are: 

1. Model assumptions: We are working with simple random 

samples of a random variable Y that has a normal distribution.  

2. Null hypothesis: “The mean of the random variable Y is a 

certain value !0.”  

  Alternative hypothesis: "The mean of the random variable Y is 

not !0." (This is called the two-sided alternative.) 

3. Test statistic: 

! 

y  (the sample mean of a simple random 

sample of size n from the random variable Y). 

 

Before discussing item 4 (the mathematical theorem), we first 

need to: 

1. Clarify terminology 

2. Discuss sampling distributions 
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1. Terminology and common confusions:  

 

• The mean of the random variable Y is also called the 

expected value or the expectation of Y.  

o It’s denoted E(Y).  

o It’s also called the population mean, often denoted as µ.  

o It’s what we do not know in this example. 

 

• A sample mean is typically denoted 

! 

y  (read "y-bar").  

o It’s calculated from a sample y1, y2, ... , yn of values of 

Y by the familiar formula 

! 

y  = (y1+ y2+ ... + yn)/n. 

 

• The sample mean 

! 

y  is an estimate of the population mean µ, 

but they are usually not the same.  

o Confusing them is a common mistake. 

 

• Note the articles: "the population mean" but "a sample 

mean".  

o There is only one population mean associated with the 

random variable Y.  

o However, a sample mean depends on the sample 

chosen.  

o Since there are many possible samples, there are many 

possible sample means. 

 

Illustration: 
http://wise.cgu.edu/sdmmod/sdm_applet.asp 
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Putting this in a more general framework: 

• A parameter is a constant associated with a population. 
o In our example: The population mean µ is a 

parameter. 

o When applying statistics, parameters are usually 

unknown. 

o However, the goal is often to gain some information 

about parameters. 

• To help gain information about (unknown) parameters, we 

use estimates that are calculated from a sample. 

o In our example: We calculate the sample mean 

! 

y  as 

an estimate of the population mean (parameter) µ. 

“Variance” is another common example where parameter and 

estimate might be confused: 

• The population variance (or “the variance of Y”) is a 

parameter, usually called !2
 (or Var(Y)). 

• If we have a sample from Y, we can calculate the sample 

variance, usually called s2. 

• A sample variance is an estimate of the population 

variance. 

• Different samples may give different estimates. 
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2. Sampling Distribution: 

Although we apply a hypothesis test using a single sample, we 

need to step back and consider all possible suitably random 

samples of Y of size n, in order to understand the test.  In our 

example: 

• For each simple random sample of Y of size n, we get a 

value of 

! 

y .  

• We thus have a new random variable 

! 

Y 
n : 

o The associated random process is “pick a simple 

random sample of size n” 

o The value of 

! 

Y 
n  is the sample mean 

! 

y  for this 

sample 

• Note that 

o 

! 

Y 
n  stands for the new random variable 

o 

! 

y  stands for the value of 

! 

Y 
n , for a particular sample 

of size n. 

o 

! 

y  (the value of 

! 

Y 
n ) depends on the sample, and 

typically varies from sample to sample. 

• The distribution of the new random variable 

! 

Y 
n  is called 

the sampling distribution of 

! 

Y 
n  (or the sampling 

distribution of the mean).  

• Note: 

! 

Y 
n

 is an example of an estimator: a random variable 

whose values are estimates. 

Rice Simulation of sampling distribution: 

http://onlinestatbook.com/stat_sim/sampling_dist/index.html 
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Now we can state the theorem that the large sample z-test for the 

mean relies on: 

4. The theorem states: If the model assumptions are all true (i.e., 

if Y is normal and all samples considered are simple random 

samples), and if in addition the mean of Y is indeed !0 (i.e., if 

the null hypothesis is true), then  

 

i. The sampling distribution of 

! 

Y 
n  is normal 

 

ii. The sampling distribution of 

! 

Y 
n  has mean !0  

 

iii. The sampling distribution of 

! 

Y 
n  has standard deviation 

! 

"
n

, where " is the standard deviation of the original 

random variable Y.  

 

Check that this is consistent with what the simulation shows. 

 

Also note: 

• 

! 

"
n

 is smaller than " (if n is larger than 1) 

• The larger n is, the smaller  

! 

"
n

 is. 

• Why is this nice? 

 

More Terminology: " is called the population standard deviation 

of Y; it is not the same as the sample standard deviation s, 

although s is an estimate of ".  

 

The following chart and picture summarize the conclusion of the 

theorem and related information: 
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     Considering the    Considering one   Considering all 

       population     sample  suitable samples 
 !              !   ! 

 Random 

variable Y  

(population 

distribution) 

Related quantity 

calculated from a 

sample y1, y2, … , 

yn 

Random 

variable 

! 

Y 
n  

(sampling 

distribution) 

Type of 

Distribution 

Y has a 

normal 

distribution 

The sample is 

from the (normal) 

distribution of Y 

! 

Y 
n  has a 

normal 

distribution 

Mean Population 

mean ! 

(! = !0 if null 

hypothesis 

true)  

Sample mean 

! 

y  =  

(y1+ y2+ … yn)/n 

 

! 

y  is an estimate 

of the population 

mean ! 

Mean of the 

sampling 

distribution of 

! 

y   -- it’s also 

!. 
(! = !0 if null 

hypothesis 

true) 

Standard 

deviation 

Population 

standard 

deviation ! 

Sample standard 

deviation 

s =  

! 

1

n "1
(y " yi)

2

i=1

n

#  

 

s is an estimate of 

the population 

standard deviation 

! 

Sampling 

distribution 

standard 

deviation 

! 

"
n

 

          " 
From the 

Theorem 
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• Which column of the chart corresponds to the blue 

distribution? 

• Which column of the chart corresponds to the red 

distribution? 

• How could you tell without looking at the legend? 
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The roles of the model assumptions for this hypothesis test 

(large sample z-test for the mean): 

 

Recall:  

 

The theorem has three assumptions: 

 

Assumption 1: Y has a normal distribution (a model 

assumption). 

 

Assumption 2: All samples considered are simple random 

samples (also a model assumption). 

 

Assumption 3: The null hypothesis is true (assumption for the 

theorem, but not a model assumption). 

 

The theorem also has three conclusions: 

 

Conclusion 1: The sampling distribution of 

! 

Y 
n  is normal 

 

Conclusion 2: The sampling distribution of 

! 

Y 
n  has mean !0  

 

Conclusion 3: The sampling distribution of 

! 

Y 
n  has standard 

deviation 

! 

"
n

, where " is the standard deviation of the 

original random variable Y.  

  

The following chart shows which conclusion depends on which 

assumption(s): 
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           Assumptions of Theorem  
       ! 

Conclusions about 

Sampling 

Distribution 

(Distribution of 

! 

Y 
n )  

       ! 

1. Y normal 

(model 

assumption) 

2: Simple 

random 

samples 

(model 

assumption) 

3: Null 

hypothesis 

true (not a 

model 

assumption) 

1: Normal   

! 

 

        ! 

 

 

2: Mean !0   

 

  

! 

3: Standard 

deviation 

! 

"
n

  

  

! 

 

     " 
Corresponds to third 

column in table on p. 18 

  

 Note that the model assumption that the sample is a simple 

random sample (in particular, that the Yi’s as defined earlier are 

independent) is used to prove:  

 

1. that the sampling distribution is normal and 

 

2. (even more importantly) that the standard deviation of the 

sampling distribution is 

! 

"
n

 . 

 

This illustrates a general phenomenon that independence 

conditions are usually very important in statistical inference. 
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Consequences (More detail later):  

 

1. If the conclusion of the theorem is true, the sampling distribution 

of 

! 

Y 
n  is narrower than the original distribution of Y 

 

• In fact, conclusion 3 of the theorem gives us an idea of just 

how narrow it is, depending on n.  

 

• This will allow us to construct a useful hypothesis test. 

 

2. The only way we know the conclusion is true is if we know the 

hypotheses of the theorem (the model assumptions and the null 

hypothesis) are true.  

 

3. Thus: If the model assumptions are not true, then we do not 

know that the theorem is true, so we do not know that the 

hypothesis test is valid. 

 

In the example (large sample z-test for a mean), this translates to:  

 

If the sample is not a simple random sample, or if the random 

variable is not normal, then the reasoning establishing the 

validity of the test breaks down. 

 

 

 

 

 

 

 

 

 

 



 23 

QUIZ: Would this test be reasonable to use in the following 

situations? Why or why not? 

 

1. The histogram of values of Y for the sample is 

a. 
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Reasonable to use test? _________________ 

 

Why or why not? ________________________ 
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b. 
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Reasonable to use test? _________________ 

 

Why or why not? ________________________ 

 

 

2. Y is a random variable that can only take on values between 0 

and 1. 

Reasonable to use test? _________________ 

 

Why or why not? ________________________ 

 

3. The sample consists of people who responded to a request on a 

website. 

Reasonable to use test? _________________ 

 

Why or why not? ________________________ 
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Importance of Model Assumptions in General:  

Different hypothesis tests have different model assumptions.  

• Some tests apply to random samples that are not simple.  

• For many tests, the model assumptions consist of several 

assumptions.  

• If any one of these model assumptions is not true, we do not 

know that the test is valid. (The bad news) 
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Robustness: 

Many techniques are robust to some departures from at least some 

model assumptions. (The good news) 

• “Robustness” means that if the particular assumption is not 

too far from true, then the technique is still approximately 

valid. 

• For example, the large sample z-test for the mean is 

somewhat robust to departures from normality. In particular, 

for large enough sample sizes, the test is very close to 

accurate.  

o Unfortunately, how large is large enough depends on 

the distribution of the random variable Y. (More bad 

news) 

• Robustness depends on the particular procedure; there are no 

"one size fits all" rules. 

o Unfortunately, I have not been able to find easily 

available compilations of robustness results for a variety 

of procedures. 

o Unfortunately, some literature on robustness is 

incorrect.  

A very common mistake in using statistics: Using a hypothesis 

test without paying attention to whether or not the model 

assumptions are true and whether or not the technique is robust to 

possible departures from model assumptions is a. (More later.) 

Caution re terminology: “Robust” is used in other ways – for 

example, “a finding is robust” could be used to say that the finding 

appears to be true in a wide variety of situations, or that it has been 

established in several ways. 
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IV: FREQUENTIST CONFIDENCE INTERVALS 

Before continuing the discussion of hypothesis tests, it will be 

helpful first to discuss the related concept of confidence intervals.  

 

The General Situation: 

• We’re considering a random variable Y.  

• We’re interested in a certain parameter (e.g., a proportion, or 

mean, or regression coefficient, or variance) associated with 

the random variable Y (i.e., associated with the population)  

• We don’t know the value of the parameter. 

• Goal 1: We’d like to estimate the unknown parameter, using 

data from a sample. (A point estimate) 

• But since estimates are always uncertain, we also need: 

• Goal 2: We’d like to get some sense of how good our 

estimate is. (Typically achieved by an interval estimate) 

The first goal is usually easier than the second. 

 

Example: If the parameter we are interested in estimating is the 

mean of the random variable (i.e., the population mean, which we 

call ____), we can estimate it using a sample mean (which we call 

____). 
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The rough idea for achieving the second goal (getting some sense 

of how good our estimate is): We’d like to get a range of plausible 

values for the unknown parameter. (“What we want.”) We will call 

this range of plausible values a confidence interval. 

 

The usual method for calculating a confidence interval has a lot 

in common with hypothesis testing: 

• It involves the sampling distribution 

• It depends on model assumptions. 

 

A little more specifically:  

• Although we typically have just one sample at hand when we 

do statistics, the reasoning used in classical frequentist 

inference depends on thinking about all possible suitable 

samples of the same size n.  

• Which samples are considered "suitable" will depend on the 

particular statistical procedure to be used.  

• Each confidence interval procedure has model assumptions 

that are needed to ensure that the reasoning behind the 

procedure is sound.  

• The model assumptions determine (among other things) 

which samples are "suitable." 
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Illustration: Large Sample z-Procedure for a Confidence Interval 

for a Mean 

• The parameter we want to estimate is the population mean µ 

= E(Y) of the random variable Y.  

• The model assumptions for this procedure are: The random 

variable is normal, and samples are simple random samples. 

o So in this case, "suitable sample" means “simple 

random sample”.  

o For this procedure, we also need to know that Y is 

normal, so that both model assumptions are satisfied. 

Notation and terminology: 

• We’ll use " to denote the (population) standard deviation of 

Y. 

• We have a simple random sample, say of size n, consisting of 

observations y1, y2, ... , yn.  

o For example, if Y is "height of an adult American 

male," we take a simple random sample of n adult 

American males; y1, y2, ... , yn are their heights. 

• We use the sample mean 

! 

y  = (y1+ y2+ ... + yn)/n as our 

estimate of the population mean µ.  

o This is an example of a point estimate -- a numerical 

estimate with no indication of how good the estimate 

is.  
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More details: 

• To get an idea of how good our estimate is, we use the 

concept of confidence interval.  

o This is an example of an interval estimate. 

• To understand the concept of “confidence interval” in detail, 

we need to consider all possible simple random samples of 

size n from Y.  

o In the specific example, we consider all possible simple 

random samples of n adult American males.  

o For each such sample, the heights of the men in the 

sample of people constitute our simple random sample 

of size n from Y. 

• We consider the sample means 

! 

y  for all possible simple 

random samples of size n from Y.  

o This amounts to defining a new random variable, which 

we will call 

! 

Y 
n  (read “Y-bar sub n”, or “Y-sub-n- bar”).  

o We can describe the random variable 

! 

Y 
n  briefly as 

"sample mean of a simple random sample of size n 

from Y", or more explicitly as: "pick a simple random 

sample of size n from Y and calculate its sample mean".  

o Note that each value of 

! 

Y 
n  is an estimate of the 

population mean µ.  

# e.g. each simple random sample of n adult 

American males gives us an estimate of the 

population mean µ. 
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• This new random variable 

! 

Y 
n  has a distribution, called a 

sampling distribution (since it arises from considering 

varying samples).  

o The values of 

! 

Y 
n  are all the possible values of sample 

means 

! 

y  of simple random samples of size n of Y – i.e, 

the values of our estimates of µ. 

o The sampling distribution (distribution of 

! 

Y 
n ) gives us 

information about the variability (as samples vary) of 

our estimates of the population mean µ. 

o A mathematical theorem tells us that if the model 

assumptions are true, then: 

1. The sampling distribution is normal 

2. The mean of the sampling distribution is also µ. 

3. The sampling distribution has standard deviation 

! 

"
n

 

o Use these conclusions to compare and contrast the 

shapes of the distribution of Y and the distribution of 

! 

Y 
n  

# What is the same? ________________________ 

# What is different? ________________________ 

# How do the standard deviations compare? 

___________________________________ 
o The chart (best read one column at a time) and picture 

below summarize some of this information. 

 


