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The financial model

1. there are d + 1 traded (liquid) assets:
I money market account B. We assume the interest rate r = 0:

B = 1
I d stocks: S = (S1, . . . ,Sd) (semimartingale on the stochastic

basis (Ω,F , (Ft)0≤t≤T , P)

2. N non-traded or illiquid European contingent claims with:
I maturity T
I payoff f = (fi )1≤i≤N

Think N = 1 for simplicity of notation



The economic agent

1. position (x , q) at time 0:
I initial capital x , invested in money market and stocks
I q units of contingent claims f

2. time horizon T

3. preferences over terminal wealth described by a utility
function U



Trading strategies and optimal investment
invests initial (liquid) wealth x holding Ht stocks at any time t (H
is predictable and S-integrable)

I (liquid) wealth process

Xt = x +

∫ t

0
HudSu

X (x) is set of wealth processes with initial capital x (subject
to some restrictions depending of the kind of utility)

I Total wealth at maturity: XT + qf

Optimal investment with random endowment:

u(x , q) = sup
X∈X (x)

E [U(XT + qf )]

Denote by X (x , q) the optimal trading strategy above
Remark: when q = 0 we have the special case of ”pure
investment”

u(x) := u(x , 0), X (x) := X (x , q)



Utility-based pricing and hedging

Investor with initial position (x , q)

I prices depend on preferences and position (x , q)

I hedging = trading strategy that offsets the risk coming from
the contingent claims

I measure risk/return using utility functions

I hedging (of the q contingent claims) is embedded in the
problem of optimal investment with contingent claims:
Hodges & Neuberger, Davis, Duffie et al., Henderson,
Hobson, etc



Definition of utility-based prices

Definition 1: the (vector) p = p(x , q) is called utility based price
for position (x , q) if

u(x , q) ≥ u(x̃ , q̃),

whenever x + qp = x̃ + q̃p
Remark: pricing by marginal rate of substitution
Definition 2: the buyer’s reservation price for q claims for an
agent having x initial liquid wealth and no claims is defined by

u(x) = u(x − b(x , q), q).



Definition of hedging strategies

Definition 3: the number c(x , q) is called certainty equivalent
value of the position (x , q) if

u(c(x , q)) = u(x , q)

Definition 4: the utility-based hedging strategy for the q
contingent claims is defined by

G (x , q) = X (c(x , q))− X (x , q)

Remarks:

I split (by definition) the optimal investment strategy into
“pure investment” and “hedging”

X (x , q) = X (c(x , q))− G (x , q)



Approximation of prices and hedging strategies

expansion around q = 0 (where we can do computations)

I first order expansion of p(x , q) ≈ p(x , 0) + D(x)q for small q

I first order expansion for G (x , q)

I second order expansions for b(x , q) and c(x , q) for small q

Two kinds of questions:

I Quantitative: compute the expansions
I Qualitative:

I when is D(x) symmetric?
I relate pricing to hedging
I relate pricing/hedging to quadratic hedging



Answers to previous questions for U : (0,∞) → R

I Henderson, Henderson and Hobson: (quantitative) compute

second order expansion of reservation prices for U(x) = X 1−p

1−p ,
p > 0 and basis risk model

I Kallsen: (quantitative and qualitative) first order expansion of
utility based-prices for general utility but in the framework of
local utility maximization

I Kramkov and S.: (quantitative and qualitative) general utility
and general semimartingale model, characterize the qualitative
behavior in terms of existence risk-tolerance wealth processes



Objective

I Answer the same questions for a utility function

U : (−∞,∞) → R

Technical difference:

I U : (0,∞) → R: easier to define admissible strategies, harder
dual problem

I U(−∞,∞) → R harder to define admissible strategies, easier
dual problem



Previous work for U : (−∞,∞) → R

For exponential utility

U(x) = −e−γx , γ > 0

compute expansion of reservation prices and hedging strategies

I Henderson: basis risk model

I Mania and Schwezer, Becherer, Kallsen and Rheinländer,
Anthropelos and Zitkovic: more general model (but still has
some restrictions), relate to quadratic hedging



Results: mathematical assumptions

Assumptions:

I the stock price process S is locally bounded (or sigma
bounded)

I the claim f is bounded (can be relaxed)

I the absolute risk aversion of the utility function is bounded
above and below

0 < c1 ≤ −
U ′′(x)

U ′(x)
≤ c2 < ∞.

If V is the conjugate of U

V (y) = max
x∈R

[U(x)− xy ] , y > 0

then

E[V (y
dQ
dP

)] < ∞ ⇐⇒ H(Q/P) < ∞



More assumptions

Denote

I Ma the set of absolutely continuous martingale measures,

I Me the equivalent martingale measures

I Pf the measures Q with finite entropy

H(Q|P) < ∞

Assumption:

Me ∩Pf 6= ∅



Back to optimal investment
Use the framework of Owen-Zitkovic, Schachermayer, six author
paper to define admissible strategies as
X (x) = the class of stochastic integrals X = x +

∫
HdS such that

X is a supermartingale under any absolutely continuous measure Q
with finite entropy

Q ∈ Ma ∩Pf

I We have a class of admissible strategies which is independent
on the utility function, as long as utility satisfies the bounds
on the risk aversion

I the optimal investment with random endowment is well posed
for any (x , q)

I the indirect utility u(x) is two-times differentiable and

0 < c1 ≤ −
u′′(x)

u′(x)
≤ c2 < ∞.



Asymptotic pricing and hedging: the quantitative question

Theorem 1:

I Under previous assumptions, all expansions can be computed,
in terms of the second order expansion of the value function
u(x , q)

I the problem amounts to solving the quadratic optimization
problem

min
X=

R
HdS ,H∈H 2(Q(y))

EQ(y)[
−U ′′(XT (x))

U ′(XT (x))
(X + f )2]

where Q(y) is the dual measure

Q(y) ∈ Me ∩Pf

(follows from Schachermayer, Owen and Zitkovic)



Asymptotic pricing and hedging: the qualitative question(s)

All questions have positive answer if (and only if) the
risk-tolerance wealth process exists
Definition 5 For fixed x ∈ R, a wealth process R(x) is called
risk-tolerance wealth process if

RT (x) = − U ′(XT (x))

U ′′(XT (x))
> 0



Properties of R(x)

(in case it exists)

I it is bounded above and below; recall that

0 < c1 ≤ −
U ′(XT (x))

U ′′(XT (x))
≤ c2 < ∞

I R0(x) = − u′(x)
u′′(x)

I it is the derivative of the optimal strategy (when there are no
claims):

R(x)

R0(x)
= lim

∆x→0

X (x + ∆x)− X (x)

∆x



Existence of R(x)

Theorem 2 For a fixed financial model and utility function the
following assertions are equivalent:

I the risk-tolerance wealth process R(x) exists for all x ∈ R

I the dual measure Q(y) does not depend on y = u′(x)

Theorem 3 For a fixed utility function, the following are
equivalent:

I the risk-tolerance wealth process is well defined for any
financial model

I U is an exponential utility

Theorem 4 For a fixed financial model, the following are
equivalent

I the risk-tolerance wealth process is well defined for any utility
function U : (−∞,∞) → R

I the set of martingale measures M admits a largest element Q̂
with respect to second order stochastic dominance



Approximation of prices and hedging strategies with
risk-tolerance wealth process

Denote
p(x) = p(x , 0) = EQ(y)[f ]

The quantity p(x) is the marginal prices for zero demand (Davis).
Remark: the inputs needed to compute p(x) are obtained solving
the “pure investment” problem only:

u(x) = sup
X∈X (x)

E [U(XT )]

The marginal price (at q = 0) can be defined as a process

Pt(x) = EQ(y)[f |Ft ], 0 ≤ t ≤ T



Kunita-Watanabe decomposition of the price process

Assume that R(x) exists, and use it as numéraire:

I traded assets SR(x) =
(

R0(x)
R(x) , R0(x)S

R(x)

)
I price process P̃(x) = R0(x)P(x)

R(x)

Adjust the measure Q(y) to account for the new numéraire

dQR(x)

dQ(y)
=

RT (x)

R0(x)

Decomposition:
P̃(x) = M̃ + Ñ,

where M̃ = p(x) +
∫

KdSR(x), and Ñ is orthogonal to SR(x)

Theorem 5 If there is a risk-tolerance wealth process, then:

I p(x , q) ≈ p(x , 0) + q u′′(x)
u′(x) EQ(y)[Ñ

2]

I G̃ (x , q) ≈ qM̃, where G̃ (x , q) is the hedging strategy
measured in units of risk-tolerance



Examples

1. If U(x) = −e−γx then the risk-tolerance wealth process exists
and it is constant

Rt(x) =
1

γ
, 0 ≤ t ≤ T .

I everything reduces to quadratic hedging under original
numéraire and minimal entropy measure.

I recover the results of Mania and Schwezer, Becherer, Kallsen
and Rheinländer, Anthropelos and Zitkovic

2. ”generalized basis risk model” : (S ,F S) is complete, general
utility function U : (−∞,∞) → R



Extensions

I can relax assumptions of the claims f

I can consider initial random endowment instead

x → g ,

(as in Anthropelos and Zitkovic)
However, solving the problem for x = g is as hard as solving
the problem for (x , q).



Overview

1. Solve the problem of “pure investment”

u(x) = sup
X∈X (x)

E [U(XT )]

locally around a fixed x ∈ R. Obtain R(x) and pricing
measure Q(y) from here.

2. use R(x) and Q(y) to compute the linear approximation of
marginal prices and hedging strategies for all contingent
claims f

Remarks:

I the investment strategy in the presence of claims

u(x , q) = sup
X∈X (x)

E [U(XT + qf )]

(in the first order) is split into “pure investment” and hedging

I the link between the two operations is provided by R(x) and
Q(y)



Summary

I similar results to the case U : (0,∞) → R can be proved for
U : (−∞,∞) → R under appropriate technical conditions

I pricing and hedging in incomplete markets are parts of
investment strategy

I the risk-tolerance wealth process is the natural numéraire for
asymptotic pricing and hedging. Utility-based hedging reduces
to mean-variance hedging under the new numéraire.

I exponential utility is very peculiar since the risk-tolerance
wealth processes are constant
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