Asymptotic analysis of utility-based prices and hedging strategies for utilities defined on the whole real line

Mihai Sîrbu, University of Texas at Austin

University of California Santa Barbara April 6th 2009

Optimal investment and utility-based pricing hedging

Asymptotic expansions

Summary

The financial model

1. there are d + 1 traded (liquid) assets:

- money market account B. We assume the interest rate r = 0: B = 1
- d stocks: S = (S¹,...,S^d) (semimartingale on the stochastic basis (Ω, 𝔅, (𝔅_t)_{0≤t≤T}, ℙ)
- 2. N non-traded or illiquid European contingent claims with:
 - ▶ maturity T
 - payoff $f = (f_i)_{1 \le i \le N}$

Think N = 1 for simplicity of notation

The economic agent

- 1. position (x, q) at time 0:
 - initial capital x, invested in money market and stocks
 - q units of contingent claims f
- 2. time horizon T
- 3. preferences over terminal wealth described by a utility function ${\cal U}$

Trading strategies and optimal investment

invests initial (liquid) wealth x holding H_t stocks at any time t (H is predictable and S-integrable)

(liquid) wealth process

$$X_t = x + \int_0^t H_u dS_u$$

 $\mathscr{X}(x)$ is set of wealth processes with initial capital x (subject to some restrictions depending of the kind of utility)

• Total wealth at maturity: $X_T + qf$

Optimal investment with random endowment:

$$u(x,q) = \sup_{X \in \mathscr{X}(x)} \mathbb{E} \left[U(X_T + qf) \right]$$

Denote by X(x, q) the optimal trading strategy above **Remark:** when q = 0 we have the special case of "pure investment"

$$u(x) := u(x,0), X(x) := X(x,q)$$

Utility-based pricing and hedging

Investor with initial position (x, q)

- prices depend on preferences and position (x, q)
- hedging = trading strategy that offsets the risk coming from the contingent claims
- measure risk/return using utility functions
- hedging (of the q contingent claims) is embedded in the problem of optimal investment with contingent claims: Hodges & Neuberger, Davis, Duffie et al., Henderson, Hobson, etc

Definition of utility-based prices

Definition 1: the (vector) p = p(x, q) is called utility based price for position (x, q) if

$$u(x,q) \geq u(\tilde{x},\tilde{q}),$$

whenever $x + qp = \tilde{x} + \tilde{q}p$ **Remark:** pricing by marginal rate of substitution **Definition 2:** the buyer's reservation price for q claims for an agent having x initial liquid wealth and no claims is defined by

$$u(x) = u(x - b(x, q), q).$$

Definition of hedging strategies

Definition 3: the number c(x, q) is called certainty equivalent value of the position (x, q) if

$$u(c(x,q))=u(x,q)$$

Definition 4: the utility-based hedging strategy for the *q* contingent claims is defined by

$$G(x,q) = X(c(x,q)) - X(x,q)$$

Remarks:

 split (by definition) the optimal investment strategy into "pure investment" and "hedging"

$$X(x,q) = X(c(x,q)) - G(x,q)$$

Approximation of prices and hedging strategies

expansion around q = 0 (where we can do computations)

- First order expansion of $p(x,q) \approx p(x,0) + D(x)q$ for small q
- first order expansion for G(x, q)
- ▶ second order expansions for b(x,q) and c(x,q) for small q
- Two kinds of questions:
 - Quantitative: compute the expansions
 - Qualitative:
 - when is D(x) symmetric?
 - relate pricing to hedging
 - relate pricing/hedging to quadratic hedging

Answers to previous questions for $U: (0, \infty) \rightarrow R$

- Henderson, Henderson and Hobson: (quantitative) compute second order expansion of reservation prices for U(x) = X^{1-p}/(1-p), p > 0 and basis risk model
- Kallsen: (quantitative and qualitative) first order expansion of utility based-prices for general utility but in the framework of local utility maximization
- Kramkov and S.: (quantitative and qualitative) general utility and general semimartingale model, characterize the qualitative behavior in terms of existence risk-tolerance wealth processes

Objective

Answer the same questions for a utility function

$$U:(-\infty,\infty)\to R$$

Technical difference:

- U: (0,∞) → R: easier to define admissible strategies, harder dual problem
- ▶ $U(-\infty,\infty) \rightarrow R$ harder to define admissible strategies, easier dual problem

Previous work for $U: (-\infty, \infty) \to R$

For exponential utility

$$U(x) = -e^{-\gamma x}, \gamma > 0$$

compute expansion of reservation prices and hedging strategies

- Henderson: basis risk model
- Mania and Schwezer, Becherer, Kallsen and Rheinländer, Anthropelos and Zitkovic: more general model (but still has some restrictions), relate to quadratic hedging

Results: mathematical assumptions

Assumptions:

- the stock price process S is locally bounded (or sigma bounded)
- the claim f is bounded (can be relaxed)
- the absolute risk aversion of the utility function is bounded above and below

$$0 < c_1 \leq -\frac{U''(x)}{U'(x)} \leq c_2 < \infty.$$

If V is the conjugate of U

$$V(y) = \max_{x \in R} \left[U(x) - xy \right], \ y > 0$$

then

$$\mathbb{E}[V(y\frac{d\mathbb{Q}}{d\mathbb{P}})] < \infty \iff H(\mathbb{Q}/\mathbb{P}) < \infty$$

More assumptions

Denote

- ▶ M_a the set of absolutely continuous martingale measures,
- \mathcal{M}_e the equivalent martingale measures
- \mathscr{P}_f the measures \mathbb{Q} with finite entropy

 $H(\mathbb{Q}|\mathbb{P}) < \infty$

Assumption:

 $\mathscr{M}_e \cap \mathscr{P}_f \neq \emptyset$

Back to optimal investment

Use the framework of Owen-Zitkovic, Schachermayer, six author paper to define admissible strategies as

 $\mathscr{X}(x)$ = the class of stochastic integrals $X = x + \int HdS$ such that X is a supermartingale under any absolutely continuous measure \mathbb{Q} with finite entropy

$$\mathbb{Q} \in \mathscr{M}_{\mathsf{a}} \cap \mathscr{P}_{\mathsf{f}}$$

- We have a class of admissible strategies which is independent on the utility function, as long as utility satisfies the bounds on the risk aversion
- the optimal investment with random endowment is well posed for any (x, q)
- the indirect utility u(x) is two-times differentiable and

$$0 < c_1 \leq -\frac{u''(x)}{u'(x)} \leq c_2 < \infty.$$

Asymptotic pricing and hedging: the quantitative question

Theorem 1:

- Under previous assumptions, all expansions can be computed, in terms of the second order expansion of the value function u(x, q)
- the problem amounts to solving the quadratic optimization problem

$$\min_{X=\int HdS, H\in \mathscr{H}^2(\mathbb{Q}(y))} \mathbb{E}_{\mathbb{Q}(y)} [\frac{-U''(X_T(x))}{U'(X_T(x))} (X+f)^2]$$

where $\mathbb{Q}(y)$ is the dual measure

$$\mathbb{Q}(y) \in \mathscr{M}_e \cap \mathscr{P}_f$$

(follows from Schachermayer, Owen and Zitkovic)

Asymptotic pricing and hedging: the qualitative question(s)

All questions have positive answer if (and only if) the risk-tolerance wealth process exists **Definition 5** For fixed $x \in R$, a wealth process R(x) is called risk-tolerance wealth process if

$$R_T(x) = -\frac{U'(X_T(x))}{U''(X_T(x))} > 0$$

Properties of R(x)

(in case it exists)

it is bounded above and below; recall that

$$0 < c_1 \leq -rac{U'(X_T(x))}{U''(X_T(x))} \leq c_2 < \infty$$

•
$$R_0(x) = -\frac{u'(x)}{u''(x)}$$

it is the derivative of the optimal strategy (when there are no claims):

$$\frac{R(x)}{R_0(x)} = \lim_{\Delta x \to 0} \frac{X(x + \Delta x) - X(x)}{\Delta x}$$

Existence of R(x)

Theorem 2 For a **fixed financial model and utility function** the following assertions are equivalent:

- ▶ the risk-tolerance wealth process R(x) exists for all $x \in R$
- the dual measure $\mathbb{Q}(y)$ does not depend on y = u'(x)

Theorem 3 For a **fixed utility function**, the following are equivalent:

- the risk-tolerance wealth process is well defined for any financial model
- ► *U* is an exponential utility

Theorem 4 For a **fixed financial model**, the following are equivalent

- ▶ the risk-tolerance wealth process is well defined for any utility function $U: (-\infty, \infty) \rightarrow R$
- the set of martingale measures *M* admits a largest element Q
 with respect to second order stochastic dominance

Approximation of prices and hedging strategies with risk-tolerance wealth process

Denote

$$p(x) = p(x,0) = \mathbb{E}_{\mathbb{Q}(y)}[f]$$

The quantity p(x) is the marginal prices for zero demand (Davis). **Remark:** the inputs needed to compute p(x) are obtained solving the "pure investment" problem only:

$$u(x) = \sup_{X \in \mathscr{X}(x)} \mathbb{E}\left[U(X_T)\right]$$

The marginal price (at q = 0) can be defined as a process

$$P_t(x) = \mathbb{E}_{\mathbb{Q}(y)}[f|\mathscr{F}_t], \ \ 0 \le t \le T$$

Kunita-Watanabe decomposition of the price process

Assume that R(x) exists, and use it as numéraire:

Adjust the measure $\mathbb{Q}(y)$ to account for the new numéraire

$$\frac{d\mathbb{Q}^{R(x)}}{d\mathbb{Q}(y)} = \frac{R_T(x)}{R_0(x)}$$

Decomposition:

$$\widetilde{P}(x) = \widetilde{M} + \widetilde{N},$$

where $\widetilde{M} = p(x) + \int K dS^{R(x)}$, and \widetilde{N} is orthogonal to $S^{R(x)}$ **Theorem 5** If there is a risk-tolerance wealth process, then:

$$\blacktriangleright p(x,q) \approx p(x,0) + q \frac{u''(x)}{u'(x)} \mathbb{E}_{\mathbb{Q}(y)}[\tilde{N}^2]$$

• $\tilde{G}(x,q) \approx q\tilde{M}$, where $\tilde{G}(x,q)$ is the hedging strategy measured in units of risk-tolerance

Examples

1. If $U(x) = -e^{-\gamma x}$ then the risk-tolerance wealth process exists and it is constant

$${\sf R}_t(x)=rac{1}{\gamma}, \ \ 0\leq t\leq T.$$

- everything reduces to quadratic hedging under original numéraire and minimal entropy measure.
- recover the results of Mania and Schwezer, Becherer, Kallsen and Rheinländer, Anthropelos and Zitkovic
- 2. "generalized basis risk model" : (S, \mathscr{F}^S) is complete, general utility function $U: (-\infty, \infty) \to R$

Extensions

- can relax assumptions of the claims f
- can consider initial random endowment instead

$$x \rightarrow g$$
,

(as in Anthropelos and Zitkovic) However, solving the problem for x = g is as hard as solving the problem for (x, q).

Overview

1. Solve the problem of "pure investment"

$$u(x) = \sup_{X \in \mathscr{X}(x)} \mathbb{E}\left[U(X_T)\right]$$

locally around a fixed $x \in R$. Obtain R(x) and pricing measure $\mathbb{Q}(y)$ from here.

 use R(x) and Q(y) to compute the linear approximation of marginal prices and hedging strategies for all contingent claims f

Remarks:

the investment strategy in the presence of claims

$$u(x,q) = \sup_{X \in \mathscr{X}(x)} \mathbb{E} \left[U(X_T + qf) \right]$$

(in the first order) is split into "pure investment" and hedging
▶ the link between the two operations is provided by R(x) and Q(y)

Summary

- similar results to the case U : (0,∞) → R can be proved for U : (-∞,∞) → R under appropriate technical conditions
- pricing and hedging in incomplete markets are parts of investment strategy
- the risk-tolerance wealth process is the natural numéraire for asymptotic pricing and hedging. Utility-based hedging reduces to mean-variance hedging under the new numéraire.
- exponential utility is very peculiar since the risk-tolerance wealth processes are constant