
M328K – Rusin – HW7 – ANSWERS

1. Show that if p is prime and a is not a multiple of p, then the integer c = ap−2 is an
inverse of a mod p. Use this to compute the inverse of 3 modulo 67. (Hint: 67 = 26 + 3.)

ANSWER: Recall that c is the inverse of a iff ac ≡ 1 mod p. But indeed this is true by
Fermat’s Little Theorem.

The point of this exercise is that it gives us a way to compute inverses without (say)
using the Euclidean algorithm (which was a method we used before). So for example the
inverse of 3 modulo 67 would be 365. We can compute this easily by successive squaring:
32 ≡ 9, 34 ≡ 81 ≡ 14, 38 ≡ 196 ≡ −5, 316 ≡ 25, 332 ≡ 625 ≡ 22, and 364 ≡ 484 ≡ 15; then
365 ≡ 45. Indeed this is the inverse of 3: 3 · 45 = 1 + 2 · 67. In a similar way when p− 2 is
less than 2k, we can compute a−1 with k squarings and at most k + 1 multiplications mod
p, which is pretty darn efficient!

2. Use the Chinese Remainder Theorem to show that if n is divisible by at least two
different primes, then there exist integers x with x2 ≡ 1 (mod n) other than x ≡ 1 and
x ≡ −1.

ANSWER: The premise is that that the factorization of n into prime powers involves at
least two primes, so split the primes into two groups to write n = ab where each of a and
b are the products of the powers of some of the primes dividing n; in particular, they are
coprime to each other.

Then the CRT asserts that there is an integer x which is congruent to +1 modulo a
and congruent to −1 modulo b. It follows that x2 is congruent to 1 modulo both of them
and then (using the other half of CRT) must be congruent to 1 modulo ab = n.

It remains only to show that x is congruent to neither +1 nor −1 modulo n. Well, if
x were congruent to −1 modulo n then it would be congruent to −1 modulo a|n; yet we
chose x to be congruent to +1 modulo a, not −1. Similarly x cannot be congruent to +1
modulo n because it’s not congruent to +1 modulo b.

Or is it? We chose x to be congruent to +1 modulo a, but it could also be congruent
to −1 modulo a — this happens if and only if a = 2 ! So we have not accomplished our
goal if a = 2 (or if b = 2). Well, we can still win if we choose a and b to be some other
coprime factors of n. This is always possible except in two cases: when n is a power of just
one prime, and when n is twice a power of just one odd prime. So as I announced in class
you have to assume just a little bit more to complete this problem; assuming for example
that n is a product of two different odd primes is enough.

3. Show that the system of congruences

x ≡ a (mod b) x ≡ c (mod d)

has solutions iff a ≡ c (mod gcd(b, d)) . (You might want to make up some examples to
test this, first.)

ANSWER: Let us write e for gcd(b, d) for brevity.



First of all, if there is such an integer x, then x− a is a multiple of b and hence of e,
too: x ≡ a mod e. Likewise x ≡ c mod e. By transivity a ≡ c mod e.

To go in the other direction, let’s assume a ≡ c mod e. Since e is the greatest common
divisor of b and d, by the Bezout theorem, e is a linear combination of b and d, and thus
all multiples of e are as well. In particular we can write a− c in the form zd− yb for some
integers z and y. But from a− c = zd− yb we conclude a + yb = c + zd, which is then an
integer x which is simultaneously congruent to a modulo b and congruent to c modulo d.

4. Find all integer solutions x to the congruence 3x2 ≡ 23 (mod 91) .

ANSWER: First we can simplify the problem a bit by getting rid of the “3”: multiply
both sides by the inverse of 3 mod 91. Since 3 · 30 ≡ −1, it follows that the inverse of 3
will be −30 = 61. Thus x satisfies the original congruence iff x2 ≡ 23 · 61 = 1403 ≡ 38,
Now, x will satisfy this congruence mod 91 iff it satisfies it both modulo 7 and modulo 13
(since 91=7 · 13.) It’s easy to solve the congruence modulo 13, since 38 ≡ 25 = 52: both
5 and −5 are solutions and since 13 is prime, a quadratic can have at most two solutions
modulo 13, so the complete solution set is the set of x which are congruent to either 5 or
−5 modulo 13. But this information is actually irrelevant because there are NO solutions
modulo 7: all squares are congruent to 1,2, or 4 mod 7, while 38 ≡ 3. So our problem
cannot even be solved modulo 7, let alone modulo 91!

5. Find all integer solutions x to the congruence x2 − 2x− 3 ≡ 0 (mod 135) .

ANSWER: In view of the Chinese Remainder Theorem, it will suffice to find all the
integers x for which x2 − 2x− 3 = (x− 3)(x + 1) is simultaneously a multiple of 5 and a
multiple of 27. Clearly both x = 3 and x = −1 are solutions, but we need to proceed a bit
carefully to ensure that there are no others.

Obviously both x = 3 and x = −1 are solutions, and any integer x which is congruent
to one of these modulo 5 will solve the congruence modulo 5. But as in the prrevious
prolem we note that 5 is a prime and therefore there can be at most 2 solutions to a
quadratic mod 5. Obviously that means we have found the complete solution set modulo
5.

In a similar way we see these are the only solutions modulo 3. Then we try lifting
up the solutions to get solutions mod 9 (and eventually, mod 27). Any solution must be
of one of two forms x = 3 + 3k or x = −1 + 3k for some integer k. Substituting into the
polynomial (x−3)(x+ 1) gives respectively 3k(4 + 3k) or (−4 + 3k)(3k); in either case this
is congruent to zero mod 9 iff k is a multiple of 3, say k = 3L. Thus the only integers that
solve the congruence mod 9 are those of the form x = 3+9L or x = −1+9L. Substituting
again into the polynomial gives 9L(4 + 9L) resp. (−4 + 3L)(9L), which is congruent to
zero mod 27 iff L itself is a multiple of 3, from which we finally conclude that our integers
x must be congruent to 3 or −1 modulo 27.

Combining the previous two paragraphs shows that the only integers which solve the
original congruence mod 135 are those x which are congruent to −1 or 3 modulo 135.

EXTRA CREDIT! Sometimes we try to solve problems that involve multiple variables. For
example we might be interested in finding pairs of integers (x, y) that satisfy one or more



congruences. We might simply want to know whether any such pairs exist, or to know more
generally how many pairs there are, or if possible we might want a list of all solutions (or a
procedure that will generate them all). Here is an example: show that if p is an odd prime
there there are exactly (p−1) pairs (x, y) that satisfy x2−y2 ≡ 1 (mod p) . (We consider
two pairs (x, y) and (x′, y′) to be the same iff x ≡ x (mod p) and y ≡ y′ (mod p) . So
there are p2 “points” on this strange “plane” and I am asking you to show that p − 1 of
them are on this “hyperbola”.)

ANSWER: The trick is that x2 − y2 = (x− y)(x + y) !
If a is any nonzero congruence class modulo p, then a has an inverse b with ab ≡ 1.

Let x = (a + b)/2 and y = (a− b)/2; then x2 − y2 = ab ≡ 1 so this pair (x, y) lies on the
curve. (Note that Z/2 means 2−1Z, since 2 has an inverse modulo p because p is odd.)
Conversely if x2 − y2 = 1 then let a = x + y and b = x− y; these will be inverses of each
other. Thus there are exactly as many points (x, y) on the curve as there are inverse pairs
(a, b), and there are p− 1 of those, one for each nonzero a modulo p.


