
Math 343K (Rusin) Exam 2, Lucky Friday Apr 13, 2012. ANSWERS

1. Suppose G is a group containing two subgroups H and K.
(a) Give the definition: what does it mean to say K is normal in G?
(b) Show that if K is normal in G, then

HK = {hk |h ∈ H, k ∈ K}

is a subgroup of G.
(Remark: this statement can be false when K is not normal in G, for example if

G = Sym(3), H = {e, (12)}, and K = {e, (13)}.)
ANSWER: Normality means that for every k ∈ K and every g ∈ G it must be true that
g−1kg also lies in K. Replacing g by g−1, it is equivalent to insist that gkg−1 ∈ K for
every g ∈ G.

HK is not empty, since it contains e = ee ∈ HK. We must show HK is closed under
products and inverses. So suppose h1k1 and h2k2 are two elements of HK. Their product
is h1(k1h2)k2 = h1h2(h−1

2 k1h2)k2; but h1h2 ∈ H and also (h−1
2 k1h2)k2 ∈ K since K is

normal in G. Similarly (hk)−1 = k−1h−1 = h−1(hk−1h−1) ∈ HK.

2. Recall that in any group G, the center of G is

Z(G) = {g ∈ G| for all h ∈ G, gh = hg}

For every group G, Z(G) is a normal subgroup of G (you do NOT have to prove this) and
so we may form the quotient group G/Z(G).

Show that if G/Z(G) is cyclic, then G is abelian.

ANSWER: (I will abbreviate Z(G) as just Z.) Suppose G/Z is cyclic; then there is a
generator a, meaning every element of G/Z is a power of this a. But the elements of G/Z
are all cosets, so in particular we may write a = gZ for some g ∈ G. Thus all the cosets of
G/Z(G) may be written as an = (gZ)n = gnZ for some n.

But every element of G lies in one of these cosets; that means every element of G may
be written as gnz for some integer n and some z ∈ Z. So now we can see that G is abelian:

(gn1z1)(gn2z2) = gn1gn2z1z2 = gn2gn1z2z1 = (gn1z1)(gn2z2)

because z1 commutes with gn1 and with z2, and because the two powers of g commute
with each other.

Note that since G is abelian, Z(G) is all of G, and thus all of G is in one single coset:
G/Z(G) is the trivial (i.e. one-element) group!

3. An element r of a ring R is called idempotent if r2 = r.
(a) List the idempotents of Z/10.
(b) Show that if r is an idempotent, so is 1− r.



(c) Show that the ideals I = rR and J = (1 − r)R have no elements in common
except 0. (Hint: Find a way to get an equation into your proof, and then multiply that
equation by r.)

ANSWER: (a) is essentially asking for the digits whose square ends with that same digit;
the answers are 0, 1, 5, 6. It is significant that these are precisely the elements of Z/10 that
are congruent to 0 or 1 modulo 2 and also congruent to 0 or 1 modulo 5. I invite you to
explain why that is relevant, to form a conjecture, and to prove your conjecture!

(b) (1− r)2 = 1− 2r + r2 = 1− 2r + r = 1− r
(c) An element a in the intersection can be written both as a = rx and a = (1− r)y

for some x and y in R. Thus we have rx = (1− r)y. Multiply by r to get a = rx = r2x =
r(1− r)y = (r − r2)y = (r − r)y = 0y = 0.

4. (a) Show that if φ : R −→ S is a homomorphism of rings, then ker(φ) is an ideal in R.
(b) Use this to prove that whenever R is a field, every homomorphism from R to any

(nonzero) ring is one-to-one. (Hint: first decide what ker(φ) would have to be.)

ANSWER: Let I = ker(φ). This I is closed under sums because if a, b ∈ I then φ(a+ b) =
φ(a) + φ(b) = 0 + 0 = 0, showing that a + b ∈ I too. Similarly if a ∈ I and r ∈ R then
φ(ra) = φ(r)φ(a) = φ(r) · 0 = 0, showing that ra ∈ I as well.

As above, ker(φ) is an ideal of R, but fields have only two ideals, R itself and {0}.
The kernel of φ cannot be all of R because it doesn’t contain 1R: homomorphisms have to
send 1R to 1S , not to 0S . So ker(φ) = {0}.

Now, if φ(x) = φ(y) then φ(x− y) = φ(x)− φ(y) = 0, meaning (x− y) ∈ I. But then
x− y = 0, i.e. x = y. So φ is one-to-one.

5. An element r of a ring R is called a square if there is another element s ∈ R with r = s2.
(This s is then called a square root of r, naturally.)

(a) Find all the square roots of 1 in Z/8.
(b) Show that 1−4X is not a square in R[X]. (Here R is the ring of all real numbers.)
(Extra Credit) Show that 1− 4X is a square in R[[X]]

ANSWER: (a) Squaring all eight candidates, we find that only 12 = 32 = 52 = 72 = 1.
But that’s cool, eh? An element with FOUR different square roots!

(b) Since R is a field, the degree of the product of two polynomials is the sum of their
degrees; in particular, squares have even degree, while 1− 4X has odd degree.

(c) You don’t have to ”find” the square root; it suffices to demonstrate how it could be
found. Here’s the idea. Let P1 = 1− 2X ∈ R[[X]]. Then P 2

1 = 1− 4X + 4X2 agrees with
Q = 1−4X through the linear term, i.e. Q−P 2

1 is a multiple ofX2. Now we will show that if
we are given a polynomial Pn−1 of degree n−1 for which Q−P 2

n−1 is a multiple of Xn, then
for some constant c ∈ R it will be true that Pn := Pn−1 +cXn makes Q−P 2

n be a multiple
of Xn. Indeed, for any c, we will have Q−P 2

n = (Q−P 2
n−1)−2cXnPn−1 + c2X2n which is

a multiple of Xn. Since the constant term of Pn−1 is 1, we see that the coefficient of Xn in
the whole expression will vanish if c is chosen to equal half the coefficient in in Q− P 2

n−1.
Continuing in this way, we can compute each of the coefficients of P to have Q− P 2 = 0,
namely P = 1−2X−2X2−4X3−10X4−28X5 . . .. (The coefficients may also be obtained



from the binomial theorem: the coefficient of Xi is −(2i)(2i−3)(2i−5)(. . .)(3)(1)/i!, which
is also −2 times the central number of in the (2i− 1)th row of Pascal’s Triangle.)

NB — I just gave a formula for the coefficient of Xi in P that can be computed on a
calculator with around 2i ring operations in Z. Obviously you can compute the coefficient
modulo N with the same number of ring operations in ZN . What’s the fastest way you
can compute these coefficients mod N if, say, i = 2100? There’s no way you can ever carry
out 2100 iterations of anything. If you can find a way to compute that coefficient mod N
(for, say, a 100-digit N) with let’s say a mere billion ring operations, I can promise you
much fame and fortune as a mathematician and cryptographer! See me for details . . .

6. Show that if R and S are isomorphic rings, then the groups of units U(R) and U(S)
are isomorphic groups.

ANSWER: If φ : R −→ S is an isomorphism, then φ also provides an isomorphism between
the two groups of units. Indeed, xy = 1 implies φ(x)φ(y) = 1, so that if x is a unit in
R, then φ(x) is a unit in S. Similarly if z is a unit in S then φ−1(z) is a unit in R.
So φ establishes a one-to-one correspondence between the two sets of units, and has the
homomorphism property (for groups) because φ preserves multiplication (of rings).


