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Submit your solutions on the sheets provided, with your name on each sheet.

No calculators allowed. You must justify your claims.

1. Find five rational numbers z, y, x, w, v with the property that for every three numbers

A,B,C we have

(A5+B5+C5)−2(A3+B3+C3)(A2+B2+C2) = z S5+y S3T +xS2U+wST 2+v TU

where S = A + B + C, T = AB + BC + CA, and U = ABC. (You may assume that

five such numbers exist.)

2. Suppose T : V → V is a linear transformation on an n-dimensional vector space V

such that the image of T is exactly the same as the kernel (nullspace) of T . Prove

that n must be even.

3. For a certain 3 × 3 matrix X we know the traces Tr(X) = 0, Tr(X2) = 42, and

Tr(X3) = −60. Compute det(X).

4. Let R : V → V be a linear transformation on a vector space V , and suppose R2 = I.

Show that for every vector v ∈ V there exist a unique pair of vectors v1, v2 ∈ V having

R(v1) = v1, R(v2) = −v2, and v = v1 + v2.

5. For a nonzero number c we define An to be the n×n matrix with Aii = 1, Ai,i+1 = c,

and otherwise Aij = 0. For example

A4 =


1 c 0 0
0 1 c 0
0 0 1 c
0 0 0 1


Find a matrix B with BAB−1 = At (the transpose of A).

Answers will soon appear at http://www.math.utexas.edu/users/rusin/Bennett/


