ALBERT A. BENNETT CALCULUS PRIZE EXAM SOLUTIONS 5/8/10

Name:	UT EID:
Present Calculus Course:	Instructor:
Permanent Mailing Address:	
E-mail address:	
School (Natural Sciences, Engineering, etc.)	

Show all work in your solutions; turn in your solutions on the sheets provided. (Suggestion: Do preliminary work on scratch paper that you don't turn in; write up final solutions neatly and in order; write your name on all pages turned in.)

1. Find the equation of the plane that passes through the points (1,2,2) and (-1,1,3) and is parallel to the line x = 1 + 2t, y = 4 - t, z = 3t.

The normal to this plane must be perpendicular to the vector (1,2,2) - (-1,1,3) = (2,1,-1) and also normal to the direction vector (2,-1,3) of the line, hence must point in the direction of their cross product, which is (2,-8,-4), so the equation of the plane is 2x - 8y - 4z = D for some constant D. Plugging in either of the points gives D = -22, so our plane is 2x - 8y - 4z = -22, or -2x + 8y + 4z = 22, or -x + 4y + 2z = 11.

2. Let $f(x) = \sin(x^3)$. Find the 99^{th} derivative of f evaluated at 0. That is, find $f^{(99)}(0)$.

Since $\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}$, $\sin(x^3) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{6k+3}}{(2k+1)!}$. The coefficient of x^{99} is 1/33!, so the 99th derivative at x=0 is 99!/33!.

3. Find the point on the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ that is farthest from the line 2x + y = 10.

Since the line has slope -2, the nearest and farthest points must be where the tangent to the ellipse has slope -2. By implicit differentiation, $dy/dx = -\frac{9x}{4y}$. Setting this equal to -2, we get y = 9x/8, and plugging into the equation of the ellipse gives $x = \pm 8/5$, $y = \pm 9/5$. The plus signs are for the closest point, and the minus signs are for the farthest point, namely (-8/5, -9/5).

4. Let C_1 be the solid cylinder in 3-dimensional space consisting of all points whose distance from the x-axis is not greater than 6. Let C_2 be the solid cylinder consisting of all points whose distance from the y-axis is not greater than 6. If V is the intersection of C_1 and C_2 , find the volume of V. (Hint: If T is a plane parallel to the xy-plane, what does the intersection of T with V look like?)

Being within distance 6 of the y and x axes means that $x^2 + z^2 \le 36$ and $y^2 + z^2 \le 36$, so |x| and |y| are both less than or equal to $\sqrt{36 - z^2}$. This means that for any $z \in [-6, 6]$, the possible values of x and y form a square of side $2\sqrt{36 - z^2}$, hence area $144 - 4z^2$. Integrating this from z = -6 to z = 6 gives 1152.

5. Let f be a 3^{rd} degree polynomial. That is, $f(x) = ax^3 + bx^2 + cx + d$ where $a \neq 0$. Show that there is at least one number x_0 such that $f(x_0) = 0$.

First note that f(x) is continuous, being a polynomial, and that $\lim_{x\to\pm\infty} \frac{f(x)}{x^3} = \lim_{x\to\pm\infty} (a + \frac{b}{x} + \frac{c}{x^2} + \frac{d}{x^3}) = a$.

If a > 0 then, when x is sufficiently large and positive, f(x) will be positive, and when x is sufficiently large and negative, f(x) will be negative. Since f(x) is continuous, by the Intermediate Value Theorem, somewhere in between we must have f(x) = 0.

If a < 0, then for x large and positive we will have f(x) negative, and for x large and negative f(x) will be positive, and we will still have a point in between where f(x) crosses through zero.