THE UNIVERSITY OF TEXAS AT AUSTIN DEPARTMENT OF MATHEMATICS ## The Preliminary Examination in Probability ## Part I ## Fri, Jan 12, 2024 **Problem 1.** Let $T:[0,1] \rightarrow [0,1]$ be given by $$T(0) = 0$$ and $T(x) = \{1/x\}$ for $x \in (0, 1]$, where $\{a\} := \sup\{a - m : m \in \mathbb{Z} \text{ and } m \leq a\} = a = \lfloor a \rfloor$ is the fractional part of a. Show that $T_*\mu = \mu$, where $T_*\mu$ is the pushforward of μ via T and $$\mu(B) = \int_B \frac{1}{1+x} dx \text{ for } B \in \mathcal{B}([0,1]).$$ (*Note:* T is (one of several things) known as the **Gauss map**.) **Problem 2.** Let μ be a probability measure on \mathbb{R} , and let φ be its characteristic function. Show that μ is diffuse (has no atoms) if $$\lim_{t\to\infty} |\varphi(t)| = \lim_{t\to -\infty} |\varphi(t)| = 0.$$ (*Hint:* For $a \in \mathbb{R}$, compute $\lim_{T \to \infty} \int_{-T}^{T} e^{-ita} \varphi(t) dt$.) **Problem 3.** Given $X \in \mathbb{L}^2(\mathcal{F})$ and two sub- σ -algebras \mathcal{G}, \mathcal{H} of \mathcal{F} such that $\mathcal{G} \subseteq \mathcal{H}$, show that $$\mathbb{E}[\operatorname{Var}[X \mid \mathcal{G}]] \ge \mathbb{E}[\operatorname{Var}[X \mid \mathcal{H}]],$$ where $\operatorname{Var}[X \mid \mathcal{K}] := \mathbb{E}[(X - \mathbb{E}[X \mid \mathcal{K}])^2 \mid \mathcal{K}]$ for $\mathcal{K} \subseteq \mathcal{F}$. When does the equality hold? (*Note:* $\operatorname{Var}[X \mid \mathcal{K}]$ is called the **conditional variance** of X given \mathcal{K} .)