ALGEBRA PRELIMINARY EXAM: PART II

Problem 1

Let p be a prime, \mathbb{F}_p be the field with p elements, and F a finite field of characteristic p.

- a) Prove that F has p^n elements for some positive integer n.
- b) Prove that $\prod_{\alpha \in F^{\times}} \alpha = -1$ where $F^{\times} = F \setminus \{0\}$.
- c) For any $a \in \mathbb{F}_p$ we consider $f_a(x) := x^p x + a \in \mathbb{F}_p[x]$. Prove that f_a is separable and irreducible over \mathbb{F}_p for every $a \in \mathbb{F}_p \setminus 0$.

Problem 2

Consider the polynomial $f(x) = x^7 - 3 \in \mathbb{Q}[x]$. Let E/\mathbb{Q} denote the splitting field of f(x).

- a) Determine the Galois group of E/\mathbb{Q} as an abstract group and by describing its elements in terms of their action on the generators of E.
- b) Determine a primitive generator for E/\mathbb{Q} .
- c) Identify all subfields E/\mathbb{Q} which are Galois over \mathbb{Q} .

Problem 3

Consider polynomial $f(x) = x^4 - 7x + 7 \in \mathbb{Q}[x]$.

- a) Determine the Galois group of f(x) over \mathbb{Q} .
- b) Does there exist $n \in \mathbb{N}$ such that f(x) has a root in $\mathbb{Q}(\zeta_n)$?

You may use without proof the fact that

$$Disc(f) = (-1)^{(4\cdot3/2)}4^47^4 + (-1)^{(3\cdot2/2)}3^3(-7)^4 = 7^3(4^4 - 3^3 \cdot 7) = 7^3 \cdot 67.$$

Date: August 21, 2024.