PRELIMINARY EXAMINATION IN ANALYSIS PART I ${\bf AUGUST~2024}$

Please provide complete proofs for at least 3 of the following 4 problems.

- (1) Let (X, \mathcal{B}, μ) be a measure space with $\mu(X) < \infty$. For $n \in \mathbb{N}$, let $f_n : X \to \mathbb{R}$ be a measurable function. Suppose f_n converges to a function f pointwise a.e. as $n \to \infty$. Prove that f_n converges to f in measure.
- (2) Let f and g be real-valued integrable functions on a measure space (X, μ) and let

$$F_t = \{x \in X : f(x) > t\}$$

$$G_t = \{ x \in X : g(x) > t \}.$$

Prove that

$$||f - g||_1 = \int_{-\infty}^{\infty} \mu(F_t \triangle G_t) dt$$

where

$$F_t \triangle G_t = (F_t \setminus G_t) \cup (G_t \setminus F_t)$$

is the symmetric difference.

(3) Let H be an infinite-dimensional separable real Hilbert space. Let

$$S = \{ x \in H : ||x|| = 1 \}$$

$$B = \{ x \in H : ||x|| \le 1 \}$$

be the unit-sphere and ball respectively. Prove that S is weakly dense in B. This means that for any $y \in B$ there exists a sequence $(x_n)_n \subset S$ such that for any $z \in H$, $\lim_{n\to\infty} \langle x_n, z \rangle = \langle y, z \rangle$.

(4) Let $f:[0,1] \to [0,1]$ be the Cantor function. That is, if $C = \{x = \sum_{k=1}^{\infty} x_k 3^{-k} : x_k \in \{0,2\}\}$ is the middle thirds Cantor set then

$$f\left(\sum_{k=1}^{\infty} x_k 3^{-k}\right) = \sum_{k=1}^{\infty} (x_k/2)2^{-k}$$

on C, f is constant on each interval in the complement of C and f is continuous.

- (a) Is f uniformly continuous?
- (b) Is f of bounded variation?
- (c) Is f absolutely continuous?
- (d) Let λ_f be the Lebesgue-Stieltjes measure of f. Is λ_f absolutely continuous to Lebesgue measure, singular to Lebesgue measure or neither?