PRELIMINARY EXAMINATION: APPLIED MATHEMATICS—Part I

January 9, 2023

Work all 3 of the following 3 problems.

- 1. Let X and Y be normed linear spaces and $T \in B(X,Y)$.
 - (a) Define the dual operator $T^*: Y^* \to X^*$. Be sure to justify that $T^*(g) \in X^*$ for each $g \in Y^*$.
 - (b) Prove that $T^* \in B(Y^*, X^*)$.
 - (c) Prove that $||T^*||_{B(Y^*,X^*)} = ||T||_{B(X,Y)}$. [Hint: recall that the Hahn-Banach Theorem implies that or any $y_0 \in Y$, there exists $g_0 \in Y^*$ such that $||g_0|| = 1$ and $||y_0|| = g_0(y_0)$.]
- **2.** Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space.
 - (a) If X is a nonempty subset of H, prove that X^{\perp} is a closed subspace of H.
 - (b) Let $T: H \to H$ be a bounded linear operator. Let N = N(T) be the null space of T and R(T) be the range or image of T. Let $P: H \to N$ be orthogonal projection onto N. Prove that $S = T \circ P^{\perp}$ is a one-to-one mapping when restricted to N^{\perp} and that R(S) = R(T).
- 3. Let $\Omega \subset \mathbb{R}^d$ be a domain and recall that for $\phi \in \mathcal{D}(\Omega)$,

$$\|\phi\|_{m,\infty,\Omega} = \sum_{|\alpha| < m} \|D^{\alpha}\phi\|_{L^{\infty}(\Omega)}.$$

- (a) For ϕ_j and ϕ in $\mathcal{D}(\Omega)$, explain what it means for $\phi_j \to \phi$ as $j \to \infty$.
- (b) Suppose that $T: \mathcal{D}(\Omega) \to \mathbb{F}$ is linear. Prove that $T \in \mathcal{D}'(\Omega)$, i.e., T is (sequentially) continuous, if and only if for every $K \subset\subset \Omega$, there are $n \geq 0$ and C > 0, depending on K, such that

$$|T(\phi)| \le C \|\phi\|_{n,\infty,\Omega}$$

for every $\phi \in \mathcal{D}_K = \{ f \in C_0^{\infty}(\Omega) : \operatorname{supp}(f) \subset K \}.$