Real Analysis Prelim Spring 2023 - January 10, 2023 Solve all three problems:

1. Consider the Hardy-Littlewood maximal function (in balls)

 $Mf(x) = \sup_{x \in B} \frac{1}{|B|} \int_{B} |f|,$ for f(x) a continuous, compactly supported function in \mathbb{R}^{n} ,

where the supremum is taken over all balls $B \subset \mathbb{R}^n$ containing x.

Prove that Mf(x) belongs to $L^1_{\text{weak}}(\mathbb{R}^n)$.

2. Let $f \in L^1(\mathbb{R})$ and φ_{ε} be a mollifier, that is $\varphi_{\varepsilon} = \varepsilon^{-1}\varphi(x/\varepsilon)$, $\varphi : \mathbb{R} \to \mathbb{R}$ is a function satisfying $\varphi \geq 0$, the support of φ is compact and $\int \varphi = 1$. Let $f_{\varepsilon} = f * \varphi_{\varepsilon}$ be the convolution. Show that

$$\int_{\mathbb{R}} \liminf_{\varepsilon \to 0} |f_{\varepsilon}| \le \int_{\mathbb{R}} |f|.$$

- 3. Let $1 \leq p \leq \infty$, with $\frac{1}{p} + \frac{1}{q} = 1$. Show that if $f \in L^p(\mathbb{R}^n)$ and $g \in L^p(\mathbb{R}^n)$, then
 - (a) the convolution f * g is bounded and continuous on \mathbb{R}^n .
 - (b) In addition, prove that if either $f \in (L^p \cap C^m)(\mathbb{R}^n)$, or $g \in (L^q \cap C^m)(\mathbb{R}^n)$, then $f * g \in C^m(\mathbb{R}^n)$.